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PRELIMINARY DEVELOPMENT OF A THREE-DIMENSIONAL NONLINEAR
APPROXIMATION PROCEDURE FOR TURBOMACHINERY DESIGN

OPTIMIZATION APPLICATIONS

Stephen S. Stahara, Jasopin Lee,
and John R. Spreiter

SUMMARY

A theoretical investigation was carried out involving the preliminary
development of a novel three-dimensional nonlinear approximation method
capable of rapidly determining approximate solutions for highly nonlinear flows
such as typically occur in turbomachinery applications. The ultimate goal of the
study was the preliminary demonstration of the accuracy and utility of such a
method in the three-dimensional turbomachinery optimization design
environment. The specific objectives of the present investigation were the
theoretical development of the three-dimensional approximation procedure for
highly sensitive, nonlinear flows involving multiple shock waves, combination of
the approximation method with a nonlinear 3-D supercritical transonic flow
solver, coupling of the combined approximation method and nonlinear flow
solver with an optimization design procedure, and finally testing of the complete
approximation/3-D flow solver/optimization code on problems relevant to the
three-dimensional turbomachinery design optimization environment.
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1. INTRODUCTION

The remarkable success of advanced computational methods for determining
accurate solutions to increasingly complex fluid dynamic phenomena has now
been well established across a broad range of flow problems of practical
interest. What has also become simultaneously apparent with this success is
that a major impediment exists to the implementation of these emerging codes
when employed in highly-repetitive usage applications. This is due to the
excessive computational demands required by their straightforward application.
Many such applications simply cannot afford the computational cost associated
with the repetitive use of these high-level numerical solvers. Consequently, a
need clearly exists for the development and implementation of complimentary
nonlinear approximation methods that are sufficiently general and accurate to
be used in conjuction with these advanced codes to reduce their computational
demands. While this need exists across a spectrum of aerodynamic and fluid
dynamic uses, it is particularly high in turbomachinery applications. For that
application, both the basic fluid dynamic computation is highly time consuming
and the number of variable flow and geometry parameters are large, resulting in
any turbomachinery parametric or design study being computationally
expensive under the best of circumstances, and in many instances using more
advanced codes prohibitively so.

The ultimate objective beyond this initial study is to develop and demonstrate
the feasibility of such approximation methods for substantially reducing the
overall computational requirements necessary for general 3-D turbomachinery
design or parametric optimization. It is conceived that these approximation
methods would be coupled with high run-time 3-D turbomachinery
computational flow solvers, and would be used in conjunction with these
solvers in applications where large numbers of related solutions are needed.
The computational time saving would be accomplished by employing these
rapid approximation methods to decrease to a minimum the actual number of
expensive 3-D flow solutions needed in any optimization or design study. The
actual implementation would entail coupling the rapid approximation method
with a 3-D tubomachinery flow solver and a design optimization procedure into
a combined code, and then employing the approximation method in the
combined code together with a certain minimum number of pre-determined 3-D
flow solutions to then predict all of the flow solutions subsequently required by
the optimization driver as that procedure searches through the design variable
solution space to reach the final optimum design point.

That such procedures are in fact achievable has been successfully
demonstrated for two-dimensional flows. In studies made by the present author
and reported in Refs. 1-7, a remarkable nonlinear approximation method was
developed and extensively tested on a wide range of both continuous and
discontinuous nonlinear flow problems. Its ability to accurately predict
nonlinear solutions of primary interest to this study was first confirmed in case
studies invoiving a variety of strongly nonlinear transonic flows. The method
was then coupled with an optimization procedure and tested on several two-
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dimensional design problems. The results demonstrated the potential of the
approximation method to reduce the computational work in such applications by
an order in magnitude with no degradation in accuracy of the final optimized
design result.

The theoretical basis of the approximation procedure encompasses both
inviscid and viscous flows, 2-D and 3-D situations, and both steady and
unsteady flows. It has been developed most extensively for the steady situation,
however, and primarily focused in initial design applications toward
design/optimization studies of highly-nonlinear 2-D internal and external
transonic flows. A notable point regarding the development and use of the
approximation method for the application described here is that the method
does not depend on any particular turbomachinery flow analysis code.
Consequently, obsolescence of the methodology due to future analysis code
development is not a factor.

The work reported here involves the initial development and extension of these
methods and concepts to the three-dimensional turbomachinery optimization
design problem. The specific implementation involves development of the
nonlinear approximation method in a form suitable for predicting surface
properties on three-dimensional turbomachinery blades; and then integration of
that form of the approximation method with a 3-D design optimization
procedure. The QNMDIF optimization procedure recently developed at
NASA/Ames Research Center and successfully demonstrated in a variety of
aerodynamic design optimization applications (Ref. 8) was selected for
implementation in this study. That procedure consists of the QNMDIF
optimization driver (Ref. 9) coupled with the TWING three-dimensional full
potential solver (Ref. 10) for determining supercritical transonic flows past wing
or isolated 3-D blade geometries.
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2. ANALYSIS

2.1 Description of the Nonlinear Approximation Concept

The classical approach of developing a perturbation or approximation analysis -
that is, by establishing and solving a series of linear perturbation equations in
the manner elegantly described and illustrated by Van Dyke (Ref. 11) - appears
as an obvious choice for the current application. However, results from the work
reported in Ref. 1 demonstrate that for applications to sensitive flows such as
occur in most turbomachinery situations, the basic linear variation assumption
fundamental to such a technique is sufficiently restrictive that the permissible
range of parameter variation is so small to be of little practical use. An
interesting and novel alternative to the linear perturbation equation approach
has recently been successfully examined in which a correction or
approximation technique is used that employs two or more nonlinear base
solutions. For the approximation method, the basic solution is determined
simply by differencing two nonlinear flow solutions removed from one another
by some nominal change of a particular flow or geometrical quantity. A unit
approximation solution is then obtained by dividing that result by the change in
the varied quantity. Related solutions are determined by multiplying the unit
approximation solution by the desired parameter change and adding that result
to the base flow solution. This simple procedure, however, only works directly
for continuous flows for which the parameter change does not alter the solution
domain. For those parameter changes which change the flow domain,
coordinate stretching is necessary to ensure proper definition of the unit
approximation solution. Similarly, for discontinuous flows, coordinate straining
is nece-sary to account for movement of discontinuities due to the parameter
change. We will discuss in detail the importance of coordinate straining to the
approximation method below.

The attractiveness of such an approximation method is that it is not restricted to
a linear variation range but rather replaces the nonlinear variation between two
base solutions with a linear fit. This de-emphasizes the dependence and
sensitivity inherent in the linear perturbation equation method on the local rate
of change of the base flow solution with respect to the varied quantity. For many
applications, particularly at supercritical transonic speeds, the flow is highly
sensitive, and the linear range of parameter variation can be sufficiently small to
be of no practical use. Furthermore, other than the approximation of a linear fit
between two nonlinear base solutions, this new method is not restricted by any
further approximations with respect to the governing differential equations and
boundary conditions. Rather, it retains the full character of the original methods
used to calculate the base flow solutions. Most importantly, no perturbation
differential equations have to be posed and solved, only algebraic ones. In fact,
it isn't even necessary to know the exact form of the perturbation equation, only
that it can be obtained by some systematic procedure and that the perturbations
thus defined will behave in some 'generally appropriate' fashion so as to permit
a logical perturbation analysis. For situations involving variations of physical
parameters, such as reported here, the governing perturbation equations are
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usually transparent, or at least readily derivable. Finally, in applying this
method it isn't necessary to work with primitive variables; rather the procedure
can be applied directly to the final solution quantity desired. An important
qualification of this method is that the two base solutions required for each
parameter change considered must be topologically similar, i.e., discontinuities
or other characteristic features must be present in both base solutions used to
establish the unit approximation solution.

The concept of employing coordinate straining to remove nonuniformities from
perturbation solutions of nonlinear problems is well established and was
originally suggested by Ughthill (Ref. 12) four decades ago. The basic idea of
the technique is that a straightforward perturbation solution may possess the
appropriate form, but not quite at the appropriate location. The procedure is to
strain slightly the coordinates by expanding them as well as the dependent
variables in an asymptotic series. It is often unnecessary to actually solve for
the straining. It generally can be established by inspection. The final uniformly
valid solution is then found in implicit form, with the strained coordinate
appearing as a parameter.

In the original applications of the method (Ref. 11), it was applied in the
'classical' sense; that is, series expansions of the dependent and independent
variables in ascending powers in some small parameter were inserted into the
full governing equation and boundary conditions, and the individual terms of the
series determined. An ingenious variation in the application of the method was
made by Pritulo (Ref.13) who demonstrated that if a perturbation solution in
unstrained coordinates has been determined and found to be nonuniform, the
coordinate straining required to render that solution uniformly valid can be
found by employing straining directly in the known nonuniform solution, and
then solving algebraic rather than differential equations. The idea of
introducing strained coordinates a posteriori has since been applied to a variety
of different problems (Ref. 11) and forms the basis of the current application.

The fundamental idea underlying coordinate straining as it relates to the
application of perturbation or approximation methods to nonlinear flows as we
apply them here is illustrated geometrically in Figure 1. In the upper plot on the
left, two typical transonic pressure distributions are shown for a highly
supercritical flow about a nonlifting symmetric profile. The distributions can be
regarded as related nonlinear flow solutions separated by a nominal change in
some geometric or flow parameter. The shaded area between the solutions
represents the perturbation result that would be obtained by directly differencing
the two solutions. We observe that the perturbation so obtained is small
everywhere except in the region between the two shock waves, where it is fully
as large as the base solutions themselves. This clearly invalidates the
perturbation technique in that region and most probably somewhat ahead and
behind it as well. The key idea of a procedure for correcting this, pointed out by
Nixon (Refs. 14,15), is first to strain the coordinates of one of the two solutions in
such a fashion that the shock waves align, as shown in the upper plot on the
right of Figure 1, and then determine the unit perturbation. Equivalently, this
can be considered as maintaining the shock wave location invariant during the
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perturbation process, and assures that the unit perturbation remains small both
at and in the vicinity of the shock wave. Obviously, shock points are only one of
a number of characteristic high-gradient locations such as stagnation points,
maximum suction pressure points, etc., in which the accuracy of the perturbation
solution can degrade rapidly. The plots in the lower left part of the Figure 1
indicate such a situation and display typical supercritical transonic pressure
distributions which contain multiple shocks and high-gradient regions.
Simultaneously straining at all these locations so as to align all of the
characteristic points associated with each shock or high-gradient maxima or
minima, as indicated in the lower right plot, serves to minimize the unit
perturbation over the entire domain considered, and provides the key to
maximizing the range of validity of the approximation method. Finally, it is
important to recognize that while the approximation method replaces the
nonlinear variation between two nonlinear base solutions with a linear fit, the
resultant approximation solution is nonlinear in the varied parameter because
of the implicit nature of coordinate straining. This apparently is the basis of the
extended range of accuracy of the method.

Because the method of strained coordinates is known to be nonapplicable to
certain classes of perturbation problems, or worse, appear to be applicable
while producing incorrect results (Ref. 11), the point arises as to its use in the
present context. The question is not whether the method will produce a
uniformly valid solution -- the expansion procedure guarantees that -- but
whether the solution so produced may be incorrect inherently. Unfortunately,
unlike the method of matched asymptotic expansions, there are no firm rules
which guarantee the correctness of strained coordinate solutions. There are,
nevertheless, some generally reliable guidelines. The method of strained
coordinates appears to always succeed when the singularity predicted by the
direct unstrained problem actually exists. In our applications, this is always the
case, since we identify the singularity or invariant points as shock points,
stagnation points, and other physically identifiable points. Furthermore, we
restrict the allowable range of parametric variation such that the neighboring
calibration and predicted flows retain these same points and create no new
ones. Therefore, invariant points are neither lost nor generated over the
solution domain of interest. These considerations effectively insure that the
predicted approximation solutions will both be physically correct and,
additionally, will not violate the basic straining principle (Ref. 11) regarding
compounding of singularities.

2.2 Previous Applications of the Approximation Method

At this point, the approximation concept based on the ideas discussed above
has both been implemented and thoroughly tested in a wide range of problems.
In Ref. 1, several candidate approximation methods were studied and the most
promising method was identified. Extensive development and testing of that
method was then carded out in Ref. 4 on a large number of nonlinear flow
problems involving single-parameter changes of a variety of flow and geometric
parameters. Subcritical and supercritical flows past isolated airfoils and
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compressor cascades were considered, with particular emphasis placed on
supercritical transonic flows which exhibited large surface shock movements
over the parametric range studied. Comparisons of the approximation
predictions with the corresponding "exact" nonlinear solutions indicated a
remarkable accuracy and range of validity of the approximation method. For
example, Figure 2 from Ref. 4 provides a comparison of results illustrating the
remarkable ability of the approximation method to predict nonlinear supercritical
transonic flows. These results are for surface pressures obtained from full
potential solutions and represent nonlifting flows past several NASA four-digit,
thickness-only airfoils at M. = 0.820. The results indicated by the dotted and
dashed lines were obtained for thickness ratios of r = 0.12 and 0.08,
respectively. Those results were used to define the unit perturbation required
by the approximation method. With that unit perturbation in hand, the
approximation method was then employed to predict surface pressure results
for thickness ratios r = (0.110, 0.105, 0.100, 0.095). The approximation results,
indicated by the open symbols, v 3re then compared with full nonlinear results
obtained by running the full potential solver at those thickness ratios. As can be
seen, the results are essentially identical, in particular, in the region of the
strong shock.

The approximation method was next extended in Ref. 6 to treat simultaneous
multiple-parameter perturbations. Extensive testing of th~e method
demonstrated remarkable accuracy and range of validity of the multiple-
parameter approximation procedure in direct correspondence with the previous
results obtained for single-parameter changes. Additionally, initial applications
of the multiple-parameter approximation method combined with an optimization
procedure were also made to several two-dimensional airfoil design problems.
The results demonstrated the potential of the approximation method for
reducing the computational work in certain applications by an order of
magnitude with no degradation in accuracy. Finally, in Ref. 7, the
approximation method, configured in a form suitable for predicting an arbitrary
number of simultaneous multiple parameter changes, was combined with the
COPES/CONMIN optimization driver (Ref. 16) and coupled with the NASA
TSONIC full potential blade-to-blade turbomachinery solver (Ref. 17). A series
of calculations of the combined code, named BLDOPT, have verified the
procedure, demonstrated the accuracy of the approximation-predicted results,
and established benchmark guidelines of the potential for computational
savings of the method under the various user options included in the code. In
general, the approximation method was found to be capable of providing an
order of magnitude reduction in computational work in those applications which
involved essentially subcritical or weakly supercritical turbomachinery flows.

2.3 Theoretical Formulation: Approximation Method Prediction of Surface
Properties on 3-D Turbomachinery Blades

The underlying reason for the remarkable accuracy of the approximation
method developed in this study lies in the use of coordinate straining to define
the unit perturbation. As shown in Figure 1, where the perturbation between
two nonlinear solution states is displayed graphically as the shaded area
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between the base and the strained and unstrained calibration solution,
coordinate straining provides the ability to account accurately for the
displacement of a multiple number of discontinuities and maxima of hinh-
gradient regions due to a parameter change. This enables the perturbation
method to maintain very high accuracy in regions of high gradients where most
perturbation methods commonly fail, and to maintain that accuracy over large
parametric ranges.

In what follows, we provide a brief account of the theoretical essentials of the
strained-coordinate perturbation concept as configured and implemented in the
present design application. This is to predict simultaneous multiple-parameter
perturbation flow solutions for surface properties of supercritical wings for use in
optimized wing design. The flow solutions thus considered can contain a total
number of N discontinuities or high-gradient continuous regions.

To proceed with the theoretical basis of the approximation method as applied to
simultaneous multiple-parameter perturbations of flows containing multiple
shocks or high-gradient regions, consider the formulation of the procedure at
the full potential equation level, since all of the results presented here are
based on that level. Denote the operator L acting on the full velocity potential (D
as that which results in the three dimensional full-potential equation for 4b, i.e.,

LfZ]= 0 (1)

If we now expand the potential in terms of zero and higher-order components in
order to account for the variation of M arbitrary geometrical or flow parameters qj
from their base flow values qoj

M
D = 0 + , l +.

j= 1
(2)

qj = qoj + Aqj

and then insert these expansions into the governing Equation (1), expand the
result, order the equations into zero and first-order components, and make the
obvious choice of expansion parameters q = Aqi we obtain the following
governing equations for the zero and M first-order components

L[4o] = 0

(3)

Li [01i] + a- L1o] = 0

Here L1 is a linear operator whose coefficients depend on zero-order quantities
and oL[(Do]/aqi represents a "forcing" term due to the qjth perturbation. Actual
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forms of Li and the -forcing" term are provided in Ref. 1 for a variety of flow and
geometry parameter perturbations of two-dimensional turbomachines. and in
Ref. 18 for profile shape perturbations of an isolated airfoil. An important point
regarding Equation (3) for the first-order perturbations is that these equations
represent a unit perturbation independent of the actual value of the perturbation
quantity £j.

Appropriate account of the movement of a multiple number of discontinuities
and maxima of high-gradient regions due to the changes in the parameters qj is
now accomplished by the introduction of strained coordinates (s,t) in the form

M
x=s+X j X1 (s,t)

j=1
(4)

M
y=t+ =1 £j Yi (st)

j= 1
where

N
xI(s,t) = s + T 8 xi (t) xi (St)i=1

(5)
N

yl(St) = _ &Y iYli (st)
i=1

and EjBXi, Ej8yi represent individual x and y displacements due to perturbation of
the qjth parameter of the N strained points, and x1i(s,t), yi1(s,t) are straining
functions associated with each of the N strained points. For the applications
considered here, we have assumed that all discontinuities such as shock waves
or other high-gradient region maxima occur essentially normal to the wing
planform so that only the (x,y) coordinates require straining. This simplification
is not strictly necessary and could be relaxed in future applications. However,
the effect of this assumption on the prediction of surface properties via the
approximation method is known from extensive studies of the two-dimensional
case to be of higher order for most optimized design flow situations of
aerodynamic interest. Introducing the strained coordinate Equations (4) and (5)
into the expansion formulation leaves the zero-order result in Equation (3)
unchanged, but results in a change of the following form for the ph perturbation

_1 [41J + L2j4[(o] + - - L[o] =0 (6)

Here the operators are understood to be expressed in terms of the strained (st)
coordinates, and the additional operator L2j arises specifically from
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displacement of the strained points. In Refs. 15 and 18, specific expressions for
L2j are provided for selected perturbations involving transonic small-
disturbance and full-potential equation formulations. The essential point,
however, with regard to perturbation Equation (6) expressed in strained
coordinates is that it remains valid as before for a unit perturbation and
independent of Ej.

In employing the approximation method, Equation (6) for the jth unit perturbation
is solved by taking the difference between two solutions obtained by the full
nonlinear procedure after appropriately straining the coordinates. If we
designate the solutions for some arbitrary dependent flow quantity 0 as base
00 and calibration Qcj, respectively, of the varied independent parameter qj, we
have for the predicted flow at some new parameter value qi for all the M
parameters

M
Q(x,y) = Qo(st) + j_, 1 q j(st) + ... (7)

j=1

where

0lj (s,t) = Ocj (i ) - Qo(s,t) (8)

N
ij(s,t) = s + Y. j 8xi(t) x1i (s,t) (9)

6=1

N
9(t)=t +I tjyiYi (t) (10)

i=1

M e
x=s+j=I1 _ (Rj(St) -S) (11)

j=1 Ej

M q
y = t. I _ . (9j(t) - t) (12)

j=l C,

=j- qoj (13)

q=q- qoj (14)

We note that in order to determine the first-order corrections Qji(s,t), we require
one base and M calibration solutions in which the calibration solutions are
determined by varying each of the M arbitrary independent parameters qi by
some nominal amount from the base flow value while keeping the other fixed at
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their base values. In this way, the first-order corrections 01- can be determined
from Equation (8) where Qcj is defined as the calibration solution corresponding

to changing the jh parameter to a new value qcj, ii is the strained coordinate

pertaining to the Qc. calibration solution, and ii - qc - q represents the change
in the qj parameter Irom its base flow value. Thus,

xit)=(C(t) -  °(t))j (15)

9 c 0

qBxi(t) = (x (t). xi (t))j (16)

8yi = (y- y0 (17)

q~y, c 0(18)
Si Ep.j YTi " YTi) (8

where e1jxi(t) given in Equation (15) represents the x displacement of the ith

invariant line at the spanwise t location in the jth calibration solution from its
base flow location due to the selected change ij in the qj parameter given by
Equation (13), Ejxi(t) given in Equation (16) represents the predicted x
displacement of the ith invariant line at the spanwise t from its base flow location
due to the desired change ei in the qj parameter given by Equation (14), &18yi
given in Equation (17) represents the y displacement of the tip of the ith
invariant line in the jth calibration solution from its base flow location due to the
selected change di in the qj parameter given by Equation (13), and Cj yj given in
Equation (18) represents the predicted y displacement of the tip of the ith

invariant line from its base flow location due to the desired change Ej in the qi
parameter given by Equation (14), xli(s,t) is a unit-order straining function
having the property that

xli (xk(t),t) =0 ki (19)

which assures alignment of the ith invariant line at the t spanwise location
between the base and calibration solutions, and yi(t) is a unit-order straining
function having the property that

YliJ()k 1 k-i (20)
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which assures alignment of the tip of the ith invariant line between the base and
calibration solutions.

In addition to the single conditions given by Equation (19) and (20) on the
straining functions, it may be convenient or necessary to impose additional
conditions at other locations along the contour. For example, it is usually
necessary to hold invariant the end points along the contour, as well as to
require that the straining vanish in a particular fashion in those locations. All of
these conditions, however, do not serve to determine the straining uniquely.
The nonuniqueness of the straining, nevertheless, can often be turned to
advantage, either by selecting particularly simple classes of straining functions
or by requiring the straining to satisfy further constraints convenient for a
particular application.

The fact of nonuniqueness of straining function, however, raises a further
question of the dependence of the final approximation-predicted result on
choice of straining function. An initial example of the effect of employing two
different straining functions for a strongly supercritical two-dimensional flow was
provided in Ref. 15, and in Ref. 4 a detailed examination was made of the
dependence of approximation results on several classes of different straining
functions. Although it can be demonstrated (Ref. 15) that the final
approximation-predicted result obtained when employing strained coordinates
is formally independent of the particular straining function used -- provided that
the straining function moves the invariant points to the proper locations -- the
results of Ref. 4 demonstrate that, under certain conditions, particular classes of
straining functions can induce spurious approximation results. The underlying
reason is that, while the approximation-predicted results at and in the vicinity of
invariant points are independent of the choice of straining function (provided
invariant point locations are preserved), some classes of straining functions
have the undesirable property of producing unwanted straining in certain
regions removed from the invariant points. The correction for this deficiency,
which was found in Ref. 4 and has proven effective in all case studies
undertaken, is to employ linear piecewise-continuous straining functions. This
both preserves the accuracy of the approximation results in the vicinity of the
invariant points, and introduces no excessive straining in regions removed from
those locations.

For linear piecewise-continuous straining functions, the functional forms of the
straining can be compactly written. For the x displacement we have

X + 1 (t) -s s-x0(t) ( cs + x oxO

ij~ ~ (t)(M A-0 ( + 1

H( 0 1 (t) - s) 9 H(s - x°(t)) (21)
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where H denotes the Heaviside step function. As discussed above, it is usually
necessary to hold invariant both of the end points along the contour in addition
to the points corresponding to discontinuities or high-gradient maxima.
Consequently, for the results reported here, the array of x invariant points in the
base and calibration solutions have been taken as

0Ft o 0 0 0I°t 0 xI (t), x2() .. xn(t), 1)

(22)
x (t) --{0, Xc Mt), X (t), ... ,(t), 1)

where the contour length at the spanwise location t has been normalized to
unity and where n is the number of invariant points along the contour exclusive
of the end points.

Similarly, for the y displacements of the tips of the continuity lines we have

0 0

IYTi+ " ct t-Y~1  c

H(YTi+I- t) * H(t - y ) (23)

where the spanwise locations of the tips of the discontinuity lines in the base
and calibration solutions have been taken as

Ti= {YI' y02' y03' "'" Yn)

(24)
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3. RESULTS

3.1 Development of Multiple Invariant Point Characterization Procedure for
Surface Shock Waves

Development of an accurate procedure to enable the definition and subsequent
tracking of the invariant points associated with high-gradient regions, in
particular, shock waves is key to the accuracy of the approximation method.
Both current and previous testing of the approximation method has
demonstrated the advantages of employing a multiple invariant point
representation of shock waves. Results for the approximation prediction of
highly nonlinear solutions via the coordinate straining procedure employed in
the method clearly show that the accuracy of the predicted results are most
sensitive in the vicinity of shock waves or other high gradient compressive
regions. This occurs since in those regions any misalignment of the base and
calibration solutions employed to determine the unit perturbations from which
the approximate solutions are obtained becomes highly magnified in the
approximation predicted results due to the presence of the large gradients in
these regions. Hence, a single invariant point representation of a shock is quite
accurate for normal or near-normal shock waves. However, for shocks that are
characterized by more gradual gradients so that the flow variation is that of a
highly sloped but not vertical line, predictions based on the single invariant
point representation can degrade rapidly for even moderate parameter
extrapolation or interpolations from the base and calibration values. A method
for alleviating this degradation in accuracy is to introduce additional invariant
points to characterize the shock wave. This device acts to improve the
predicted approximate solution in those high gradient regions by requiring the
approximate method to track more than one topological feature of the shock.
Shock waves that are typically generated by most of the currently existing
Navier-Stokes, Euler, and full potential flow algorithms are usually
characterized by some precursor compression region upstream of the shock, a
high-gradient central shock region, and a post expansion region, such as
illustrated in the sketch below.

C

+0 x

Illustration of Multiple Invariant Point Characterization
for Surface Shock Wave Topology Tracking
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For our purposes, a sufficiently general way to characterize such a shock would
be to use four invariant points that would correspond to: (1) pre-shock minimum
pressure point, (2) maximum gradient or Cp point, (3) post-shock maximum
pressure point, and (4) post-shock minimum expansion pressure point. While
such a characterization of a shock is quite general, it is not necessarily the most
advantageous choice to employ in all cases. The reason is that the local
topology of shock waves in many transonic flows, even over relatively small
parameter ranges, can change so as to make it difficult to continuously identify
all the invariant points described above. For example, in many transonic flows it
is common for a change in the post-shock expansion topology to occur during a
parameter variation whereby that region loses its post expansion character.
The remedy for this is to use only the minimum number of invariant points
needed to track a topological phenomenon over a parameter range of interest.

With regard to shock waves, we have concluded that for the class of flows of
primary interest to this study that it is safe to ignore the post shock expansion
region (i.e. point 4) and confine the multiple invariant point characterization to
the compressive gradient portion of the shock, i.e. between points (1) and (3)
illustrated above. We have done this, and have found from numerical
experiments that the post expansion region remains satisfactorily predicted.
Additionally, we have found that employing a third invariant point located at the
maximum gradient or Cp location in the middle of the shock (point 2) adds no
significant improvement in accuracy. Hence, for the transonic flows of concern
to this study, a two invariant point characterization of shock waves is sufficient
and was adopted as the standard model.

In order to track the two invariant shock points, it is necessary to establish an
appropriate criteria to continuously identify them. Ideally, the criteria should be
such so as to allow unambiguous identification of the invariant points
throughout the anticipated range of parameter variation. In order to establish
these criteria and because these shock wave invariant points play such a
critical role in controlling the overall accuracy of the approximation method, it
was necessary to carry out extensive numerical experimentation to identify the
best criteria to set these points. As a result of this test, we have found the
following strategy to identify and track the two shock wave invariant points the
best of a variety of schemes.

Selection of the invariant point at the beginning of the shock was found to be
best set by choosing the point where dCp/dx = 0. We investigated other
alternatives, such as placing the invariant point where the shock slope attains a
certain value (eg. dCp/dx = -1) or placement of the invariant point at a certain
location upstream of the point where the pressure distribution goes through
sonic (C. -C ). The result of these studies has shown that the choice of the
point where dCp/dx = 0 is the best.

Selection of the invariant point at the foot or end of the shock is more direct in
the sense that the maximum pressure point behind the shock is a natural and
obvious choice for termination of the shock region. However, while the choice
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of the point is clear, we have found from the results of our testing that in many
instances the approximation predictions in the vicinity of the shock foot degrade
rapidly. Furthermore, we found that significantly improved results in that region
could be achieved by modification of the location of the shock foot point. These
cases occur when, due to local numerical grid spacing of the flow solver or
other factors, the maximum pressure point behind a shock in the base and
calibration solutions happens to lie just off the maximum gradient line of the
shock, as illustrated in the sketch below on the right, rather than on the
maximum gradient line as normally occurs as shown in the figure on the left.

Max gradient Max gradient
mjge fie

Shock foot Shock foot

Shock Foot Point On Shock Foot Point Off
Max Gradient Une Max Gradient Une

The remedy for this is to locally sharpen the shock prior to determining the unit
perturbation distributions by relocating the shock foot on the maximum gradient
line. We have implemented this into the approximation method, and have found
that this results in significantly improved results in the predicted approximate
solutions for both the location of the shock foot as well as the pressure
distribution in the near vicinity of the shock foot.

Finally, even with all the careful analysis involved in the selection of the two
invariant points characterizing the shock, it is inevitable in many cases involving
multiple parameter perturbations that there will often occur some slight
misalignment in the shock regions between the base and the various calibration
solutions. This results in inaccuracies in the unit perturbations and, as a
consequence, in the predicted approximation solutions. Particularly in
situations involving extreme parameter extrapolation or interpolation, the
predicted shock region often contains a point or points for which the results are
clearly spurious. While the most direct means of eliminating this would be to
employ finer grids for the computation of the base and calibration flow solutions,
this is often not desirable or possible because of the increased computer
storage and/or CPU costs. Consequently, what is required is a procedure for
smoothing the predicted values at those points while simultaneously retaining
the overall integrity of the approximation solution. We have implementated a
combination of several schemes that ensure the appropriate behavior of the
predicted solution in the shock region. To accomplish this, it was necessary to
employ more than one smoothing procedure in order to allow for the correction
of from one to a number of points in the shock region. For example, we have
found it best to employ a linear smoothing correction in order to correct for one
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or two points, while for three or more points it was found to be necessary to
employ either quadratic or cubic least squares smoothing. The smoothing
procedures developed ensure that monotonicity is maintained in both ordinate
and slope throughout the predicted region.

With these procedures incorporated into the approximation method, we have
performed extensive testing to verify them on difficult one, two, and three
parameter perturbations involving highly nonlinear supercritical transonic flows.
Figures 3 through 6 provide some examples of the remarkable predictions that
the approximation method is capable of.

Figures 3a.-g. presents the results of the ability of the approximation method to
predict extreme solution extrapolation results when using two very closely
spaced base and calibration solutions. The base and calibration solutions
shown and used to determine the unit perturbations needed for the
approximation results are for highly supercritical flows past a symmetric NACA
OOXX series blade profile at an oncoming Mach number of 0.82 and zero angle
of attack with thickness ratios t/c = 0.115 and 0.120 for the base and calibration
solutions, respectively. The predicted results indicated by open symbols are for
new thickness ratios t/c = {0.110, 0.105, 0.100, 0.095, 0.090, 0.085, 0.080) and
are shown in Figures 3a. to 3g. Those results are meant to be compared with
the solid lines which represent the exact solutions obtained from running the
flow solver at the new thickness ratios. We believe these results are
remarkable in that even though the base and calibration solutions were
purposely poorly selected for spanning the range of thickness ratios shown, the
approximation method is able to do an excellent job of tracking the shock for
extrapolations beyond 400% of the parameter difference between the base and
calibration solutions. This is far beyond what any linear approximation theory is
capable of achieving.

The corresponding results shown in Figures 4a.-g. are for a more reasonable
choice of base and calibration solutions. For these results, the base and
calibration thickness ratios were t/c =(0.900,0.1 10), respectively. The predicted
results are for t/c = (0.120, 0.115, 0.105, 0.100, 0.095, 0.085, 0.080), and
represent both solution interpolation and extrapolation. The approximation
predictions agree extremely well with the exact results over the entire parameter
range displayed.

In Figures 5a.-c. we provide results demonstrating the capability of the
approximation method to simultaneously predict both upper and lower surface
pressures. The results are for an angle of attack perturbation of highly
supercritical flows past a NACA 0012 blade profile with oncoming Mach number
M = 0.75. The base and calibration angles of attack were (1.00, 2.00) degrees,
respectively, with the predicted angles at (2.50, 1.50, 0.50). The approximation
results indicated are again in good agreement with the exact solutions over the
entire parameter range and on both surfaces of the blade.

Finally, in Figures 6a.-e. we provide the results of a simultaneous two-
parameter perturbation of strongly nonlinear flows. The results shown are for
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an oncoming Mach number and thickness ratio perturbation of a symmetric
NACA OOXX blade profile at zero angle of attack. The base and calibration
Mach number and thickness ratio are Mb = 0.82, (tlc)b , 0.120, Mc - 0.80, (tlC)c
= 0.110. The predicted results are for {M, tic) - (0.84, 0.115), (0.83, 0.115),
(0.81, 0.115), (0.79, 0.115), (0.78, 0.115). The agreement between the
approximation predicted and exact nonlinear results are again excellent. We
have performed many additional comparative caculations with the
approximation method and have obtained similar good results as those shown
above.

3.2 Multiple Invariant Point Characterization and Invariant Point
Preprocessing Procedure

The first step in developing the approximation method solution is the
determination of the particular invariant points to be employed to characterize
the flows under consideration. For the typical nonlinear flows pertinent to this
study, these invariant points can be characterized as follows: maximum
pressure or stagnation point, minimum suction pressure and associated*

recovery points near the nose on both the upper and lower surfaces, Cp points
denoting shock waves and their associated local minimum and maximum
pressure points that characterize the initiation and termination of the shock
regions. Figure 7 illustrates a 3-D pressure distribution characteristic of the
ones of interest to the present study. Shown in that figure are the chordwise
surface pressure distributions on both the upper and lower surfaces of a 3-D
blade at 17 spanwise stations across the blade from root to tip. In locating the
invariant points for this example, we begin at the trailing edge and consider the
trailing edge points for both the upper and lower surface fixed. Thus, we
proceed from the trailing edge point on the lower surface and move upstream
searching for sonic Cp points and the stagnation point. If a C point is found
on the lower surface, we then proceed to locate a local dgp/dx = 0 point
upstream of the shock and, if appropriate, search for a local maximum pressure
point just downstream of the Cp* point. After locating all the Cp* points and
their associated maximum and minimum points on the lower surface, we locate
the maximum pressure or stagnation point near the nose. We then locate the
minimum suction pressure point on the lower surface just downstream of the
stagnation point, and the dCp/dx - 0 point just downstream of the lower surface
minimum suction pressure point. Next, the minimum suction pressure point on
the upper surface located just downstream of the stagnation point is found, as
well as the associated dCp/dx = 0 points just upstream of those points and the
maximum post-shock pressure points just downstream of those Cp* points. As
an example, for the sample case shown in Figure 7, nine invariant points were
located according to the above criteria. These invariant points on each of the
17 chordwise pressure distributions are indicated by a (+) sign. They
correspond to a CI* and associated dCp/dx = 0 point on the lower surface near
the nose, the stagnation point, the minimum suction pressure and associated
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dCp/dx = 0 point on the upper surface near the nose, and the maximum post-
shock and associated upstream dCp/dx - 0 point for the upper surface shock.

The next step in proceeding with the approximation method solution is to
preprocess these numerically computed pressure distributions at each
spanwise location so as to smooth them in the vicinity of the shock waves and
minimum suction pressure locations. The result of this preprocessing for the
example shown in Figure 7 is illustrated in Figure 8. Comparison of the results
in Figure 8 with those of Figure 7 shows that as a result of the preprocessing a
distinct sharpening of the shock in the vicinity of its post-shock maximum
pressure has been achieved.

The final step of the preprocessing procedure is to relocate all these invariant
points in each of the chordwise pressure distributions so as to ensure a globally
continuous variation in the spanwise coordinate direction of the various
selected points. The result of this final step of the smoothing procedure is
illustrated in Figure 9. Comparison of the relocated invariant points with the
original invariant points shown in Figure 7 clearly displays a smooth global
variation is now present in the locations of both the dCp/dx = 0 points
associated with the upper surface minimum suction pressure point, and also
with the upper surface post-shock maximum pressure points.

In order to demonstrate how accurately the approximation method enhanced by
the new preprocessing scheme can predict strongly nonlinear 3-D flows, we
have selected two different 3-D test problems. The first involves an overall
thickness ratio change of an isolated 3-D blade having an ONERA M6 profile.
To establish the parameter range of thickness ratios over which the
approximation method would be tested, we considered changes in the overall
thickness ratio of the blade from 80% to 120% in steps of 5% from its nominal
value, i.e. (tic) = (0.80, 0.85, 0.90, 0.95, 1.00, 1.05, 1.10, 1.15, 1.20) so that nine
3-D solutions were determined. These were computed at an oncoming Mach
number of M = 0.86 and angle of attack of 3.06 degrees. After application of the
preprocessing precedures described above, the solution for the nominal value
of thickness ratio (tc)max - 1.00 is illustrated in Figure 10 where the chordwise
upper and lower surface pressure distributions at each of the 17 spanwise
locations of the 3-D grid used in the solution determination are displayed.
Figures 11 a.-c. provide comparisons of the approximation method at the root
chord station (y/s = 0.0) when the base and calibration solutions are taken at
(t/c)max - (0.90, 1.10), respectively, and the predicted results are given at
(t/c)max - (0.80, 1.00, 1.20). The comparisons between the approximation
method and the exact results are outstanding. Figures 12a.-c. provide similar
results at the outermost spanwise station (y/s - 0.969). Again the comparisons
are remarkable.

The second 3-D example problem involves a significantly more difficult test of
the approximation method due to the fact that we selected it to involve an
unusually large topology change in the 3-D solutions over the parameter range
selected. This problem involves an oncoming Mach number parameter change
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over the same 3-D blade geometry studied in the first example, but with the
Mach number changing from M = 0.880 to 0.720 in steps of 0.02. Three of the
nine 3-D solutions at the beginning, middle, and end of the parameter range
after invariant point preprocessing are displayed in Figures 13a.-c. The large
topology change is evident as we go from the strongly supercritical pressure
distribution at M = 0.880 shown in Figure 13a., which has an extremely strong
upper surface shock, to the subcritical distribution at M = 0.720 shown in Figure
13c., which has no upper surface shock but has an extremely pronounced and
compressed upper surface minimum suction pressure region near the nose.
Although such a major topology change is normally considered far beyond the
assumptions under which the approximation method is valid, we have begun
development of an extension of the method to allow it to at least approximate
solutions through these topology changes without further recourse to yet
another new set of 3-D base and calibration solutions that would cover the new
topology change. This procedure involves development of a criteria to handle
invariant point coalescence whereby two invariant points move toward one
another and eventually meet. When that occurs, a new criteria is necessary to
implement the approximation method in order to prevent the two invariant points
from crossing and producing topologically spurious results. In the planned
optimization applications planned for the approximation method, we believe it to
be extremely advantageous if the method can continue to perform reasonably
well and in an automatic fashion even under such extended circumstances.
Some results of the approximation method predictions under such conditions
are provided in Figures 14a.-d. These results are at the most extreme spanwise
location (y/s = 0.969) along the blade, and are for a choice of base and
calibration Mach numbers of M = {0.82, 0.86), with the predictions given at M =
(0.88, 0.84, 0.80, 0.72). We clearly see the disparate differences between the
base and calibration solutions in these plots. Nevertheless with regard to the
comparisons, the approximation method is able to do a very reasonable job of
predicting the pressure distribution change from strongly supercritical as shown
in Figure 14a. to quite subcritical as shown in Figure 14d. An additional
procedure to eliminate the spurious points evident behind the upper surface
minimum suction pressure peak, and also to improve the approximation
prediction behind the maximum suction pressure point is needed.

3.3 Coupling of 3-D Approximation Method and 3-D Flow Solver With Design

Optimization Procedures

3.3.1 Selection of Design Optimization Procedure

A review was conducted of all methods and applications thereof that have been
developed and applied to the general class of aerodynamic design optimization
problems that are of relevance to this study. The concept of optimizing about an
aerodynamic rather than structurally related design objective is relatively new
(Refs. 19,20). Consequently, with one exception, comparative studies of the
performance and reliability of different optimization algorithms for this class of
optimization problems have not been carried out. The result has been that
essentially all of the current applications involving aerodynamic optimization
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studies (eg. Refs. 21-25) have involved use of the CONMIN conjugate gradient
optimization method (Ref. 26), a procedure originally designed for the
conceptually different problem of optimized structural design. The CONMIN
method, as well as the more generalized COPES procedure (Ref. 16) which
includes CONMIN as the basic optimization module but contains additional
modules that provide some convenient features for carrying out certain
constrained minimization problems involving side constraints and design
variable bounding, have now been applied to a variety of sensitive
aerodynamic design optimization problems. These have involved the optimized
design of airfoils (Refs. 19,20), turbomachinery blades (Ref. 7) and wings
(Refs. 23-25) at highly nonlinear supercritical transonic flow conditions. For the
structural optimization problems for which the CONMIN procedure was
originally developed, the method has generally performed quite satisfactorily.
However, for the new class of aerodynamic optimization problems, the CONMIN
procedure has demonstrated a number of deficiencies. This is not altogether
surprising since structural design optimization problems typically involve large
numbers (10 - 1000) of design variables and side constraints but rapid
computation of the governing internal structural element solutions. In contrast,
aerodynamic optimization problems typically involve relatively few design
variables and side constraints but slow and expensive computations of
relatively sensitive governing flow solutions.

We have reviewed all the published applications involving aerodynamic
optimization problems of the general class of interest here in which the
CONMIN optimization procedure has been employed. These investigations
include our own substantial experiences with the CONMIN and
COPES/CONMIN procedures in which we designed a pilot code for optimizing
the design of blade-to-blade profiles of turbomachinery blades (Ref. 7). In
assessing the performance of the CONMIN optimizer, which employs the
Fletcher-Reeves conjugate gradient algorithm as the driver, all of the reported
investigations appear to have encountered similar deficiencies with the method.
The most significant of these is the tendency of the conjugate gradient algorithm
to become focused or stuck at a local minimum, and not be able to discern that
this has occurred and proceed from there toward a more global minimum. In
the worst cases, the method does not move to any significant degree away from
the original design. The basis of this problem lies with the manner in which the
conjugate gradient method performs its optimization search. At each iteration of
the technique, the gradient of the objective function with respect to each design
variable is calculated and a line search is performed in the direction given by a
certain linear combination of the current gradient and the last search direction.
The objective function gradients are always calculated by one-sided forward
differences with no provision for central differences. The step size employed
can be scaled by the size of the associated variables, but is independent of the
value of the objective function, its precision or its derivatives. What this
ultimately means is that any variable which increases the objective function
when stepped in one direction is assumed to reduce the objective function
when moved in the opposite direction. This is not true when the objective is
near a local minimum of one variable. It is in these regions where the method
can fail disastrously. What can occur near these local minima is that as the
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gradient alternates in sign about that point, the stepsize is reduced by the
optimizer in hopes of resolving the problem. With the reduced stepsize, the
solution process becomes unable to move away from that location. This result
is exactly what has been observed with the CONMIN conjugate gradient
method.

One way to try to alleviate this problem would be to employ central differencing
in the gradient determinations. While this would be substantially more
expensive than employing one-sided differences, it would not have to be
implemented at all times, but only when the optimization search is in the vicinity
of a local minimum. We have investigated implementing this possibility by
examining the combined CONMIN/ITSONIC blade optimization code that we
previously developed (Ref. 7) to determine whether central differencing could
be easily introduced into the CONMIN optimization procedure. It appears that
implementing a central difference procedure into the method cannot be easily
done, but would require a significant rewrite of the optimization code. This
would be an effort beyond the scope of the present investigation.

The one tested alternative to the COPES/CONMIN conjugate gradient
procedure for aerodynamic optimization applications is the quasi-Newtonian
procedure. That procedure has now been implemented into an optimization
driver called QNMDIF (Ref. 9), and configured so as to avoid several of the more
serious deficiencies inherent in the CONMIN driver. The QNMDIF driver is
based on the quasi-Newtonian minimization algorithm as orginally developed
by Gill, et. al. (Refs. 27, 28). A number of improvements have been
implemented to maintain stable convergence in the presence of roundoff errors,
ill-conditioning, or occasional small discontinuities in the objective function. For
example, the method will switch from forward to central differences if the search
procedure fails to produce a significantly better point, and then back to forward
differences if an improved rate of progress occurs later. A comparative series of
systematic test cases employing both the CONMIN and QNMDIF solvers have
been carried out for a number of difficult optimization problems (Ref. 9). The
results have demonstrated the significantly better performance of the quasi-
Newton algorithm. The QNMDIF procedure, originally developed for 2-D
applications, has now been combined with the 3-D TWING full potential flow
solver into an efficient optimization solver for supercritical 3-D wing design (Ref.
8).

On the basis of the demonstrated superiority of this method over the CONMIN
conjugate gradient procedure, we have opted to employ the QNMDIF quasi-
Newton procedure as the optimization driver of choice for the present
investigation. The integration of the 3-D approximation method, as currently
developed, with the combined 3-D flow field solver (TWING) and quasi-Newton
optimization driver (ONMDIF) was carried out. As could be anticipated, the
resulting combined code is quite large, i.e. approximately 17,000 lines of
Fortran source. Consequently, we have decided that in order to expedite the
initial testing of the approximation method in this combined procedure that the
segment of the code containing the approximation method together with all the
geometry and other routines that are required to enable prediction of the
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approximation-predicted objective function be separately modularized. This
was done in such a fashion as to allow separate testing of the approximation
methods' performance in the solution space typical of the optimization design
environment, and then to later allow direct coupling with the QNMDIFUWING
optimization procedure when the approximation method testing is complete.

3.3.2 Definition of 3-D Turbomachinery Design Optimization Problem for
Testbed Case Studies With Approximation Method

After reviewing the various classes of optimization problems that can be directly
implemented with the QNMDIF/TWING optimization procedure as it is presently
constituted, a particular class of aerodynamic optimization design problems was
selected that is sufficiently general in its overall design aspects to be
representative of practical design problems relevant to turbomachinery
applications. The selected problem class relates to the optimized design at
highly supercritical flow conditions of a 3-D wing or isolated blade geometry so
as to minimize its total drag-to-lift ratio. This choice provides a challenging
design problem to the optimization method as well as the approximation
method because of both the overall sensitivity of the 3-D flow to small changes
in geometry, as well as the particular choice of objective function. Several
investigators have found (Refs. 23-25) that although the selection of drag or
drag/lift ratio as the objective function is the most relevant choice to the design
process, drag was too sensitive a quantity for the optimization and inviscid flow
solver codes employed at that time to produce acceptable results. In order to
achieve some measure of optimization, the less satisfactory choice of
employing a target pressure distribution as the objective had to be made. From
a physical standpoint, this is not nearly as desirable as using overall drag as an
objective since apriod knowledge of an appropriate target pressure distribution
is not conveniently available for most problems. However, it has been found
(Ref. 8) that by using the new quasi-Newton optimization driver together with an
accurate full potential flow solver and a higher 3-D flow solution convergence
tolerance the employment of inviscid drag as the objective function is practical,
and that good optimization results can be achieved on that basis.

Consequently, based upon these demonstrated results the initial testbed
optimization case study for the 3-D approximation method was selected to be
the optimized design of a 3-D wing or isolated blade operating at highly
supercritical flow conditions using the drag/lift ratio as the objective function with
approximately 10 design variables related to wing surface geometry. This is a
challenging design environment for the approximation method since the 3-D
flow solutions required here are extremely nonlinear, and the simultaneous
multiple design variable parameter changes required by the optimizer as it
proceeds through the design variable solution space usually exhibit a strong
nonlinear coupling between the solution states. However, the overall design
problem represented by this selection is so fundamental and directly relatable
to practical aerodynamic design that its accurate solution by the approximation
method would be a major contribution to achieving the general transition of
turbomachinery analysis codes to design mode utilization.
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The specific design strategy selected is based on that employed in Ref. 8 since
it appears to be one of the most efficient optimization strategies reported to date.
The design problem involves the geometric optimization of the surface of a 3-D
wing or isolated turbomachinery blade using a relatively small number of
design variables to modify the surface geometry. The overall problem is
outlined in Figure 15. In contrast to previous optimization studies which have
employed various analytic shape functions distributed along the chord of the
profile (Refs. 20-22) to alter the baseline profile, the technique suggested in Ref.
8 is to simply assign as design variables the vertical displacement of several
pre-assigned points on the wing surface. Then, as shown in Figure 15, by
holding invariant the surface (;eometry along that portion of the profile surface
we do not wish to change, the surface geometry along the remainder of the
profile is altered by employing a spline-fitting routine to redefine that portion of
the surface as the pre-assigned movable points displace vertically from their
baseline locations in response to the optimization process. The advantage of
this strategy is that a small number of movable points is sufficient to redesign a
relatively large segment of a 3-D geometric surface. For instance, for the
example shown in Figure 15, at each of 3 spanwise locations on the wing three
chordwise points located at approximately x/c = (0.2,0.4,0.6) were found to be
sufficient to recontour the upper surface segment of the wing along the
chordwise band from x/c = (0.08 to 0.75) and to enable quite satisfactory
optimization results to be obtained. We will discuss these results shortly. In
contrast, employing analytic shape functions distributed at various locations
along the profile chord would typically require at least double the number of
design variables.

The initial three-dimensional optimization case study chosen for the
approximation method is then summarized as follows: using drag/lift as the
objective, the planform geometry as illustrated in Figure 15, and a constant
profile geometry across the span given by the NACA 64 A212 airfoil, the upper
surface of the wing was modified along the chordwise band from approximately
x/c = (0.08 to 0.75) using a total of 9 design variables associated with the
movable spline-supported points as indicated Figure 15 and located at the 3
spanwise locations y/s = 10.25,0.50,.075) and chordwise locations x/c -
10.2,0.4,0.6).

3.3.3 Results of Combined Approximation Method and Optimization Procedure
for 3-D Design Optimization Case Studies

In order to establish the benchmark for evaluating the approximation methods
performance, we have run the QNMDIF/TWING optimization procedure without
employing the approximation method. This particular optimization problem was
previously studied in Ref. 8 so that a direct comparative result is available.
Figure 16 provides the original spanwise pressure distributions of the baseline
configuration, and provides in the lower left of the figure the nominal values of
the nine design variables for the baseline configuration multiplied by 100, i.e.
values of the normalized Z coordinate of the movable spline-fitted points 100.(
(Z/c) 1 , (Z/c)2 , ...). Figures 17, 18, 19, and 20 display the optimized wing
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spanwise pressure distributions after the 7th, 8th, 9th, and 10th optimization
cycles, respectively. The 10 cycles required approximately 12,000 secs. of
CRAY XMP CPU time. In our calculations we have employed a finer grid
(149,31,26) than that (89,25,18) previously used since we wished to resolve the
upper surface shock more accurately. Figure 21 provides an interesting
synopsis of the behavior of the quasi-Newton optimization procedure for this
design problem. That figure provides the behavior history of the objective
function each time it is evaluated from the 3-D flow solution as called by the
optimization driver. As can be seen, essentially the first 30 evaluations and
corresponding 3-D flow solutions are needed to set up the Hessian matrix of
mixed second derivatives of the objective function with respect to the 9 design
variables. Once that is completed, there is a large drop in objective function as
the method proceeds to its first design point. After that, only gradient
evaluations are needed, i.e. essentially one 3-D solution for each design
variable, to take the method through the succesive optimization cycles. The
rapid and continuing convergence of the procedure is evident, in contrast to the
slow and often halting convergence behavior of the conjugate gradient method.

As the first test of the 3-D approximation method's ability to predict 3-D surface
pressure distributions in the multiple design variable solution space associated
with the above optimization problem we have employed the approximation
method to predict the surface pressure distributions for the design variable
values associated with the design point at the end of each of the last 4
optimization cycles run on the above design problem. These are the pressure
distributions previously shown in Figures 17-20. Figures 22, 23, 24, and 25,
respectively, provide comparisons of the approximation predicted surface
pressures at the wing root chord with the exact 3-D TWING flow solutions at
those same 4 design points illustrated in Figures 17-20. With the exception of
several points in the near vicinity of the upper surface shock wave, the
comparisons are quite reasonable. In the numerical determination of the 3-D
flow solution by TWING, the computational grid used employs 25 spanwise
locations on the wing. At all of these 25 spanwise stations, an approximation
prediction of surface pressure is required in order to accurately calculate the
approximation-predicted drag for comparison with the exact result. For this test
case, however, at approximately the sixth spanwise location we found the initial
approximation method predictions to break down due to shock wave invariant
point crossings. This is not entirely surprising considering the topologically
complex pressure distribution presented by the current optimization problem.
Note that the approximation method is trying to track both the chordwise and
spanwise movement of the shock wave due to the simultaneous change of 9
design variables, all occurring in a highly nonlinear, coupled flow environment.
What is needed to remedy this occurrence in the approximation method is a
more generalized and robust determination of the 3-D invariant point locations
that are required by the approximation method. We discuss its development
below.

Another issue of note is the strategy for selecting the calibration solution matrix
required as input to the approximation method. For our first choice, we simply
selected a subset of the 3-D solutions determined by the QNMDIF optimization
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method for the Hessian matrix calculation. This strategy has the appeal that no
additional 3-D flow solutions are needed to be calculated. What we found,
however, was that the design variable stepsizes initially selected by the
optimizer are too small and do not cover a sufficient volume of the design
variable solution space that will ultimately be searched by the optimizer as it
proceeds to the optimum design point. Consequently, for the approximation
predicted results presented in Figures 22 to 25 the calibration solution matrix
was hand picked so as to provide a reasonable coverage of the flow solution
space from the baseline solution shown in Figure 16 to the final design point
solution shown in Figure 20. Of course, apriori knowledge of the appropriate
range for design variable movement is generally not available. Consequently,
the most effective strategy for determining the calibration solution matrix, and
perhaps even more generally, the best way to employ the approximation
method, i.e. from the very start of the optimization problem so that even the
Hessian matrix is determined using approximation-predicted 3-D solutions, or
immediately after the Hessiai matrix is determined, or at the end of the first
optimization cycle, or some combination or variation of these different
strategies, requires investigation.

In working with the combined ONMDIF/TWING/APPROX pilot code, it was
immediately found to be necessary to separate and modularize the 3-D
geometry and grid generator routines from the combined pilot code so as to
allow direct interaction with either full 3-D TWING solutions or with
approximation-predicted solutions. The reason for separating and modularizing
the 3-D wing geometry and finite difference grid generator from the combined
QNMDIF/TWING/APPROX pilot code was to permit the extensive testing of the
approximation method to be carried out without continually being burdened by
the overhead of the entire QNMDIF/TWING/APPROX program combination.
Carrying this overhead is not necessary for testing the approximation method,
and modularization of these routines adds considerably to the computational
efficiency. Note that just as with the full 3-D TWING solutions, in order to
compute the approximation-predicted lift and drag, it is necessary to
redetermine the wing geometry for each variation in design variables so that
pressure integrations can be carded out over the newly-designed wing surface.
In determining full 3-D TWING solutions, the TWING grid generator
redetermines the chordwise distributions of wing surface points that are initially
determined by the wing geometry generator and then input to it. We also
elected to employ the TWING grid generator to determine the points at which
the approximation-predicted pressures were to be determined. This insures
that for the approximation-predicted results a smooth distribution of chordwise
points will be achieved at each spanwise location. Additionally, it further
guarantees that unnecessary inaccuracies associated with solution
interpolations are avoided when comparing approximation-predicted and exact
TWING results.

After the separation and modularization of those geometry and grid generator
routines, verification calculations of the lift and drag using the approximation
method were performed in order to verify the modularization. This testing was
accomplished by employing the modularized geometry and grid generator
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routines together with the approximation method to reproduce the results
associated with the 3-D TWING base and calibration solutions. That was
carried out by setting the design variable values to be those of the base and
calibration solutions. Hence, the approximation method then simply repredicts
the base and calibration pressure distributions. If the geometry and grid
generator routines then correctly determine the wing geometry information
required to calculate the lift and drag at each spanwise location, the results so
calculated should compare identically with those determined from the exact 3-D
TWING calculations. It was verified that the predicted sectional lift and drag
predicted by the modularized code exactly reproduces that determined by the
full TWING code.

Examples of the output of the predicted sectional lift, drag, and drag/lift ratio as
determined from the modularized code are provided in Figures 26-29. For
example, illustrated in Figure 26a. are the spanwise distributions at each of the
25 spanwise locations along the wing of the sectional lift, drag, and drag/lift ratio
for the optimized wing surface pressure distribution shown in Figure 26b. Note
that this pressure distribution is the result that was obtained after the 7th
optimization cycle for the benchmark case study.

Additional successfully-predicted results from the modularized code for the
sectional lift and drag are provided in Figures 27a.-b. to 29a.-b. Those results
are for the optimized pressure distributions after the 8th, 9th, and 10th
optimization cycles, respectively, for the benchmark case study. Consequently,
the results illustrated in Figures 26-29 represent both the target pressure
distributions and the sectional lift and drag results that the approximation
method will attempt to predict for the testbed optimization study.

3.4 Extended Invariant Point Relocation Procedure and Postprocessing of
Approximation Results

An improved methodology for redefining the 3-D chordwise and spanwise
invariant point locations associated with shock waves that occur in the base and
calibration solutions was developed. This was found to be necessary as a
result of testing carried out on the benchmark optimization case study. This
involved determination of a procedure for relocating the shock wave invariant
points in the spanwise direction that provides a continuous and smooth
variation of both the invariant point locations as well as the associated values of
the pressure at those points. An illustration of the typical improvement provided
by the relocation procedure is provided in Figures 30a.-b. to 32a.-b. In Figure
30a., results are given for the unmodified base TWING solution employed in the
benchmark case study. The plot on the left of that figure displays the spanwise
locations of the invariant points associated with the upper surface shock, while
the plot on the right shows the associated Cp values of those same points. In
both of the plots, the triangular symbols represent the invariant point locations
associated with the beginning of the shock wave, while the square and circular
symbols represent, respectively, the correponding sonic point and shock
termination locations. Note the nonsmoothness evidenced by several of the
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points, particularly as shown in the Cp values. Figure 30b. illustrates the same
plots after the relocation procedure has been applied. The smooth variation in
both location and Cp values is evident. More remarkable results of the
procedure are provided in Figure 31a.-b. That figure illustrates analogous
results for one of the calibration solutions in which the original invariant point
location procedure could not locate a distinguishable invariant point marking
the beginning of the shock wave at several spanwise locations near the root
chord, as can seen in Figure 31 a. However, as shown in Figure 31b., the
relocation procedure successfully provides smoothly-varying invariant points
marking the beginning of the shock wave at those locations for this calibration
solution. The final result provided in Figures 32a.-b. illustrates how irregular the
locations of the invariant locations associated with certain shock topologies can
become. The plot shown in Figure 32a. exhibits a gap occurring at
approximately mid-span in the identification of the invariant points associated
with the pre-shock and sonic locations in the pressure distribution for this
calibration solution. This phenomena has apparently occurred since this
particular pressure distribution does not recover through sonic velocity over that
spanwise location. Although while this phenomena may occur physically, such
a topology change will prevent a prediction by the approximation method if not
corrected. The relocation procedure corrects this problem by locating a smooth
distribution of invariant points across that spanwise gap as shown in Figure
32b.

Finally, as a result of all the above development of the 3-D approximation
method, Figures 33a.-y. display a complete prediction of a 3-D pressure
distribution by the approximation method as it is presently constituted.
Illustrated in these figures are comparisons of the approximation method and
the exact TWING results for the chordwise pressure distributions at all of the 25
spanwise stations across the wing at which the grid generator has located the
computational grid for the 3-D pressure distribution associated with the 7th
optimization cycle of the benchmark case study (see Figure 26b.). Also shown
on each of those figures for comparative purposes are the base and 9
calibration pressure distributions which are employed by the approximation
method to predict the pressure distribution results shown. The corresponding
prediction of the spanwise sectional lift, drag, and drag/lift ratio are given in
Figure 34a. and compared with the exact result in Figure 34b. taken from Figure
26. As can be seen in Figure 34, with the exception of spanwise locations 15,
19, and 25, quite reasonable predictions of these integrated spanwise
quantities are obtained from the approximation-predicted pressures. However,
in order to insure a consistent and smooth spanwise variation of all the
integrated quantities, development of a post-processing procedure to correct
and relocate the final approximation-predicted invariant point locations in the
spanwise direction is still necessary and is discussed below.

Considering Figure 34 and setting aside for the moment the fact that the total
integrated lift, drag, and drag/lift ratio of the approximation-predicted results
indicated in Figure 34a. are somewhat in error compared with the exact result
provided in Figure 34b., the overall approximation prediction for the spanwise
variation of sectional quantities appears quite reasonable. In our initial
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investigation of this problem, it appeared that the major source of error
preventing accurate prediction by the approximation method of the total
integrated forces lie with the several spanwise locations, such as locations 15,
19, and 25 shown in Figure 34a., in which clearly inconsistent behavior is
observed in the approximation prediction of the sectional quantities.
Implementation of an additional post-processing invariant-point smoothing
procedure for correcting the final approximation-predicted invariant point
locations in the spanwise direction appeared straightforward and was carried
out. Comparison of the post-processed invariant point spanwise pressure
distributions, which are not shown here, with those in Figure 34a. exhibited
some variation from the nonpost-processed distributions but resulted in no
dramatic changes. Figure 35 provides the new approximation results based on
post-processed spanwise surface pressure distributions to be compared with
the previous approximation and exact results shown in Figures 34a. and 34b.,
respectively. This new approximation result exhibits somewhat stronger
discontinuous behavior at several spanwise locations than other results that we
have obtained when applying slightly different spanwise smoothing criteria in
the invariant point location procedure, and it illustrates the basic sensitivity
problem that we've encountered with these multi-parameter 3-D solution
predictions. That is, that while the invariant point relocation procedures
developed and employed here with the 3-D approximation method can and do
insure continuous variations of invariant point locations in the spanwise
direction, a continuous variation in the sectional integrated quantities obtained
from those pressure distributions, such as lift and drag, is not similarly insured.
The reason for this is due to the strong tendency for extremely rapid local
topology change in the basic surface pressure distribution for these strongly-
nonlinear flows. These rapid topology changes in surface pressure can have
the result that a small error in the spanwise invariant point location distribution
can cause the strength and location of the shock at one or more spanwise
locations to be sufficiently in error to cause a significant discontinuous variation
in the spanwise variation of the integrated quantities.

The most direct way of correcting for this problem is to further enhance the
current invariant point relocation procedure both for redefining the invariant
point locations in the base and calibration solutions as well as post-processing
the final approximation-predicted invariant point distributions. An alternative
would be the possibility of working with another basic flow property rather than
such a strongly sensitive quantity as surface pressure. An interesting idea
which comes to mind is that instead of employing the pressure as our
fundamental dependent quantity which is discontinuous through a shock, we
employ instead the mass flux or some similar quantity that remains continuous
through a shock, and then subsequently determine the flow properties that are
of interest from these quantities.

Recall that the primary function of the invariant point location procedure is to
provide a continuous spanwise variation of both the invariant point locations as
well as the associated values of the pressure at those points. The relocation
procedure corrects descrepancies due to numerical 'jitter in the vicinity of high-
gradient regions such as shock waves in the base and calibration solutions.
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This jitter if uncorrected results in significant degradation of the unit perturbation
distributions which are determined by differencing in strained coordinates the
various calibration solution distributions and the base solution distribution. In
addition to employing the invariant point relocation procedure on the base and
calibration solutions, which can be thought of as preprocessing those solutions
in preparation for use by the approximation solution procedure, as a result of
additional numerical experimentation with the approximation method we have
also found it necessary to again apply an invariant point relocation procedure to
the approximation-predicted invariant points. This in effect postprocesses the
approximation solution. We have found this to be necessary due to the fact that
the approximation-predicted location of the invariant points often contains
numerical jitter as well, particularly for multi-parameter perturbations involving
four or more simultaneous perturbations. This jitter often results in
nonuniformities in the spanwise distribution of the invariant points. Although the
spanwise continuity of the predicted pressure distributions can appear
reasonable, integration of these distributions across the span direction often
displays nonuniform variation in the integrated sectional quantities such as lift
and drag.

In order to investigate the underlying cause and determine the appropriate
method to correct the observation of the descrepancies in the spanwise
variation of the approximation-predicted sectional lift and drag, we have
performed a detailed evaluation of the performance of the approximation
method involving one, two, three, and nine design parameters vhen employing
combined preprocessing of the invariant points in the base and calibration
solutions plus postprocessing of the invariant points in the 3-D approximation-
predicted solution. As a result of this numerical testing, we have made the
following observations. Application of the invariant point relocation procedure
to smooth out the numerical jitter in the invariant point locations in the original
base and calibration solutions is very effective and results in accurate
approximation predictions of the new invariant point locations for situations
involving a small number of simultaneous multiple parameter perturbations. We
have found that for the cases we have considered, a two or three-parameter
perturbation problem can usually be accurately modeled by the approximation
procedure. The tested problems involved strongly supercritical flows with a
strong, single shock wave across the upper wing surface. However, when the
number of multiple parameters to be simultaneously altered increases beyond
three then what seems inevitably to occur in the approximation prediction is that
some small numerical jitter in the invariant point locations, steming from either
imperfections in the original base and calibration solution locations or from the
preprocessing procedure that may slightly misalign one or more invariant
points, results in a large discrepancy in the predicted results at one or more of
the spanwise locations. In order to treat this problem, we have proceeded to
develop and test a procedure to relocate the invariant points in the predicted
solution prior to using the approximation-predicted surface pressure
distributions to determine integrated sectional quantities. As a result of this, we
have been able to demonstrate that the employment of a post-processing
procedure to relocate and realign the various invariant point distributions in the
approximation-predicted results can resolve essentially all of the discrepancies
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in the predicted results again when the number of varied parameters is small.
However, when the number of multiple parameters increases to a larger
number typically required in a realistic design problem, a number which would
usually be 10 or more, the current smoothing procedures cannot guarantee
consistent results. The basic requirement on the methods being developed in
this study is to track and accurately replicate the motion of invariant points
characterizing high-gradient, discontinuous regions of the flow field. The
prediction capability of these methods is critically dependent upon the
goodness of the basic numerical solutions for the base and calibration flow
fields that are input to them. For classes of highly sensitive flows as we have
been studying, which are inevitably the ones of most interest for practical design
applications since they usually represent situations that can benefit the greatest
from design refinements, small discrepancies in the basic numerical flow
solutions that are input to the approximation procedure can lead to large
discrepancies in the predicted pressure distributions in these high-gradient
regions. Since some numerical jitter in these regions in the base and
calibration numerical solutions is unavoidable, the resultant accuracy and
range of validity of the approximation method predictions will be significantly
reduced in these applications when the basic input to the approximation
method consists of highly-sensitive surface pressure distributions.

An alternative method to alleviate this basic restriction on the accuracy of the
approximation method, as mentioned briefly above, is to employ as input to the
approximation method flow properties other than those on the wing or blade
surface where the gradients are naturally the highest. Since most practical
design/optimization problems in both aerodynamics and turbomachinery are
focused on seeking an improvement of an integrated flow quantity, such as drag
or loss coefficient, working with surface properties is not always necessary. For
example, in order to determine the forces acting upon an aerodynamic
configuration one can employ control surfaces removed from the actual
aerodynamic surface and located at any convenient location in the flow field
where information is available. Because numerical flow field solution methods
provide information everywhere in the flow field, that information is already
available. In the present study, as well as in all of the previous work involving
the approximation method, we have employed surface pressure as the basic
dependent variable since surface pressure is both a fundamental aerodynamic
quantity and surface pressure distributions were found to be very convenient to
use in the comparative testing involved in the preliminary development of the
approximation method. However, there is no fundamental need or restriction to
employing surface quantities with the approximation method. Any convenient
distributions will serve equally as well. For our purposes, it appears just as
suitable to employ distributions of flow properties at the outer edge of the
computational grid where the flow contains significantly less high-gradient
features and is more of a small-disturbance flow. A strict small disturbance flow
is not necessary for accurate use with the approximation method. The far-field
flow can contain one or several shocks passing through the outer boundary and
the approximation method will work accurately without restriction. The essential
point is that the features of the flow field at points removed from the actual blade
surface will be less severe and subsequently less susceptable to numerical
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jitter than for example at the foot of a strong shock wave on the surface. In fact,
employment of outer flow field information to predict integrated quantities has
been recognized in the past and previously employed. Henne and Hicks (Ref.
29) have developed and employed a contour integration procedure applied to
the outer computational grid boundary of the 3-D transonic flow code FLO22NM
to evaluate the lift and drag of wings and wing/bodies at transonic speeds. This
was done in order to avoid working with surface pressures to determine the
drag which was found to be in error due to small numerical inaccuracies in the
predicted surface pressures. The result was a consistent and more accurate
prediction of drag throughout the transonic regime. We suggest that the
alternative of employing flow field rather than surface properties as the basic
input to the approximation method be examined.

Before making the final decision on whether to after the mode of operation of
the approximation method from employing surface pressure distributions as the
basic input information to using flow field properties, we have carefully reviewed
all of our previous approximation method results involving single and multiple-
parameter simultaneous changes to determine the precise sources that cause
the discrepancies currently observed in the predicted results and to insure that
no simple mechanism for easily correcting these discrepancies has been
overlooked. We have reviewed the following four major steps in the
approximation procedure: (1) the preprocessing procedure for identifying and
relocating the invariant point locations in the base and calibration solutions in
order to provide a smooth variation of these invariant points in the spanwise
direction, (2) the procedure for determining the approximation-predicted
solution based upon the preprocessed base/calibration solutions, in particular
the prediction of the new invariant point locations, (3) the post-processing
procedure for relocating the predicted invariant point locations in the spanwise
direction, (4) the integration of the post-processed approximation-predicted
solutions to determine integrated sectional quantities in the spanwise direction.

For the class of flow solutions characterizing the benchmark case study, it
appears that, even after careful post-processing, integrated sectional results of
the approximation-predicted solutions tend to exhibit noncontinuous spanwise
behavior due to invariant point misalignment. Although the benchmark test
case study involves topologically complex flows in the sense that strongly
supercritical flows are involved, we believe it to be a good test of the
approximation method if the method is to achieve a reasonably general
applicability to turbomachinery flows where flow topologies are at least as
complex as those considered here.

As a result of our review, we believe we have now identified the multiple
sources causing the limitation in the application of the approximation method in
three-dimensional studies. The primary factors are a combination of numerical
inaccuracies in the base/calibration solutions near the invariant point locations
associated with the foot of the shock together with a geometrical compounding
of these errors when the approximation-predicted invariant point locations are
dependent upon the simultaneous variation of a large number of multiple
parameters. The fundamental action of the approximation method is to move
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the invanant points linearly in multiply-strained coordinate space with respect to
each perturbation parameter. The predicted results from such a formulation
have been found to be extremely accurate in 2-D situations where the shock
structure was relatively simple and well-resolved by the numerical solution
procedure so that the associated invariant points were also well defined. For
three-dimensional situations, however, the shock structure on or near the
surface of the 3-D configuration is not so well defined by the flow solvers.
Consequently, the definition of the invariant point locations in the
base/calibration solutions is correspondingly lacking. Attempting to correct
these locations by employing general smoothing criteria can improve the
situation at some locations but inevitably increases the error at other locations.
Finally, when the approximation-predicted invariant point locations are
determined as a sum of all the individual contributions from each varied
parameter, the possibility of a significant spurious result occurring at even one
location is high. For example, in a problem involving 10 design variables, if the
approximation prediction accurately accounts for the invariant point motions
and resultant flow topology changes of 9 of the design variables, but misses the
prediction for the 10th at one spanwise location, the resultant error in the
integrated sectional quantities at that one location will usually destroy the
overall accuracy of the total force prediction. Trying to correct these errors by
some automatic smoothing process becomes increasingly complex as the
number of multiple variables increases and the various combinations of
invariant point motions permutes.

The basic conclusion is that as both the sensitivity and number of the
base/calibration flow solutions that are input to the approximation method
increase, the accuracy and range of validity of the prediction from the method
will rapidly reduce. The strategy of trying to maintain a constant range of validity
by developing increasingly more complex pre-and post-processing procedures
to try to consistently remove these inaccuracies appears to be impractical since
it requires major verification and testing and possibly even redevelopment of
the processing procedures as both the number of design variables increases
and the complexity of the surface flow topology increases. An alternative
strategy of simply increasing the numerical accuracy of the base/calibration
solutions by refining the computational grids and increasing the flow field
resolution is also not satisfactory since in many situations it may not be feasible
to do this due to computer limitations. Furthermore, it has the negative feature
of requiring the determination of higher accuracy flow solutions when using the
approximation method than when not using it.

In order to try to maintain as wide a range of validity of the approximation
method as possible as both the complexity of the surface flow topology and
number of design variables increases, it appears that the most logical way to
proceed is to choose an alternative input to the method that is not so strongly
sensitive as surface pressures. Flow field properties, in particular those
distributions in the far field, are a natural choice. As pointed out previously,
since many practical design/optimization problems in both external and internal
flows seek improvement of a figure of merit represented by an integrated
quantity such as drag or loss coefficient, the information to determine that
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integrated quamtly is contained as well in the far field flow properties, and can
be calculated by employing control volume integrations.

3.5 Alternative Formulation of Approximation Method With Flow Field Rather
Than Surface Properties

We have posed the problem of applying the approximation method when
employing flow field information rather than surface pressure distributions as
the basic input, and have carried out some preliminary work for the three-
dimensional problem. At the full potential level of solution, the following far field
flow quantities are required: (U,V,W) distributions. Since the flow is assumed
isentropic, pressure and density distributions can be determined directly from
the velocity distributions. At the Euler and Navier-Stokes level of solution, the
following far field quantities are required: (U,V,W,RHO,ENERGY) distributions.
In order to evaluate the contour integrals involved in determining the integrated
forces and moments acting upon the configuration inside the control volume,
the first step in the process is to determine the pressure and momentum fluxes
around the entire outer boundary. For this purpose, it is convenient to use a
contour associated with the computational grid at one or two mesh points inside
the outermost mesh boundary location. In employing the TWING full potential
code, the first step in this process is to determine the physical velocity
components from the velocity potential. In the TWING code, as in essentially all
current CFD flow solvers, during the solution convergence procedure all
computations are carded out in a transformed computational domain. An
illustration of the overall relationship between the physical and computational
domains embodied in the present TWING solver is provided in Figure 36.
Physical flow properties are not required nor determined during the
convergence process. After solution convergence, physical results are then
calculated as a final output step. Although grid and potential information are
available as output from the TWING code, directly differencing the potential in
physical coordinates will not retain the 2nd order accuracy maintained in the
original solution algorithm. In order to maintain the 2nd order accuracy for the
physical flow field distributions, which are needed for accurately determining
the total forces, it is necessary to difference the potential in a fashion consistent
with the original solution process. This is accomplished by employing the same
grid metrics and computational molecule surface flux formulations employed in
the solution algorithm. Although this information is embedded in the flow solver,
extracting the information directly from the solver is not easily done since
selected metric arrays are overwritten during the solution convergence process
in order to reduce computer memory requirements. Consequently, we found it
to be more expedient to write a separate code to redetermine the grid metrics
and then calculate the needed physical flow field quantities. We have now
completed that code. The computational grid employed in the TWING solver is
comprised of a combination of two-dimensional O-type grids located in (X,Z)
planes placed at successive spanwise stations along the wing from the wing
root to beyond the tip, as illustrated in Figures 37 to 39 from Ref. 10. The outer
boundary of the grid, illustrated in perspective in Figure 40, tapers inward at
span locations along the wing, and then becomes cylindrical beyond the wing
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tip out to the outer lateral sidewall boundary. Typical results for physical flow
field quantities at one grid point location inside the grid outermost boundary are
provided in Figures 41 to 43 where distributions of the velocity components
(U,V,W) are provided at each of the 30 separate spanwise stations. The
distributions of the U velocity component are quite smooth, while not
surprisingly both the V an W components exhibit the influence of the wing tip
trailing vortex passing through the grid directly downstream of the wing. The
influence of the wing tip vortex is shown even more graphically in Figure 44
which displays density contours on the same grid surface.

With the physical flow properties in the region of the outer grid boundary
determined, we have now proceeded to write the procedure for evaluating the
pressure and momentum fluxes through each of the surfaces defining the
control volume of interest, i.e. the quasi-cylindrical grid surface enclosing the
wing, the circular surface boundary at the symmetry plane, and the
corresponding circular surface boundary at the freestream sidewall boundary
as shown in Figure 36.

With the code complete for providing second-order accurate physical flow field
properties from the TWING solver at any arbitrary location on the computational
grid, we have proceeded to complete the procedure for evaluating the pressure
and momentum flux integrals on a control surface formed by the quasi-
cylindrical grid surface enclosing the wing, i.e. a K = constant grid shell and the
the bounding circular end planes at the symmetry plane and the freestream
sidewall boundary, as illustrated in Figure 36. The forces acting on the wing
contained within the control volume can be evaluated by determining the
following two surface integrals:

F = -J(p - p..)dS - jp(V - V.)-(V-dS) (25)

where S represents the three surfaces referred to above and illustrated in
Figure 36. The procedure is realized numerically by determining the cell
surface areas and normal vectors on the outward-facing surfaces on each side
of the grid cells contained on the control surface. Implemetation is done by
carrying out the integration over a selected K = Constant radial computational
grid shell (i.e. over all 's,J's) as well as the two lateral boundary surfaces
located at the symmetry plane (J=1) and the sidewall boundary (J=JMAX).
Appropriate control volume surfaces can range from the K = 2 grid shell
planned for use here down to the K = KMAX shell which conforms to the wing
and ficticious wing extension surface (See Fig. 36). A check calculation at the K
= KMAX surface should identically reduce to the previous determination of the
forces by surface pressure integrations since contributions from the momentum
flux integral in Equation (25) should be zero along both the wing and ficticious
wing extension surfaces.
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We have carried out test calculations for control volumes ranging from the K = 2
to K = KMAX grid shells. Results for the total lift and drag for the K = KMAX
control volume from our evaluation of Equation (25) produced identical results
to those previously obtained from TWING using surface pressure integrations.
The momentum flux terms at the wing surface were of the order (10), and the net
momentum flux on the ficticious wing extension was identically zero. However,
the results for the total forces for the control volumes from K = 2 to K = KMAX-1
did not check either with each other or with the results obtained previously from
surface pressure integrations. A careful check of the code for obvious errors did
not reveal the source of the discrepancy. As an additional check, we next
examined the conservation of mass using the same control volume approach.
Since the full potential equation employed here is identically the continuity
equation, conservation of mass should be satisfied for any arbitrary control
volume chosen, i.e. from individual computational grid cells to the far-field
control volumes used above for the total force computations. The results from
the mass flux integrations over the same K = Constant grid shells plus two
bounding end planes used in the momentum computations produced
erroneous non-zero mass fluxes. We then proceeded to try to isolate the source
of the error. We decomposed the far-field control surface into the sum of
component spanwise rings formed by chordwise strips (all I's) between
adjacent spanwise J nodes. We then examined the total mass flux entering and
leaving a ring control volume defined by these individual rings that were one
radial K cell thick. We found that the net mass flux was also not zero for these
rings. We next performed a check on the cell surface area and cell surface
normal determinations by imposing a freestream velocity everywhere and then
computing the mass flux. A non-zero result for mass flux for this case would
indicate an error in either or both of the determinations of the cell surface areas
and cell surface normals. The results of this computation was that zero mass
flux (within 10 ) was found for: (1) individual cells, (2) spanwise rings one K cell
thick, and (3) the far-field control volumes used in the momentum computations.
This result verified the computation of the cell surface areas and normals. We
next verified the accuracy of the physical (U,V,W) velocity distributions being
determined and employed in our current procedure. Since the TWING potential
flow is isentropic, the velocity distributions can be used to determine all the
subsequent flow properties. We used our caculated physical (U,V,W) velocity
distributions to determine the corresponding density distributions. We then
compared that result with that determined by the TWING solution procedure in
the computational domain and which uses contravariant velocity components.
The density results from each of these separate computations compared
exactly. Finally we met with and discussed these results with the NASA/Ames
Research Center scientists Dr. T.L. Hoist and Mr. S.D. Thomas who are the
authors of the TWING code. They were not aware of this discrepancy in the
code, nor of anyone else who has tried to use far-field distributions from the
code to determine total forces. During development of the solver, they had
checked the predictions of TWING with a number of other 3-D solvers and had
made successful verifications of pressure distributions and forces obtained from
the code. As a final result of the control volume formulation, we found that if we
sum the individual pressure and momentum flux surface integrations over all
individual cells throughout the total control volume, we then obtain the same
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result for the lift and drag previously determined from surface pressure
integrations. This result implies that the summing procedure we are using is
correct and that all internal fluxes cancel correctly.

With the resources remaining to the investigation, it was decided at this point
that, rather than continue to try to resolve the discrepancies encountered with
the 3-D TWING flow code in determining the lift and drag forces acting on the
configuration vis-a-vis employing contour integration of momentum fluxes on an
outer boundary removed from the actual geometrical surface, a preliminary
investigation employing flow field rather than surface properties with the
approximation method would be carried out at the axisymmetric level. The flow
solver selected for use in this preliminary study was one developed by the
present author and successfully tested in an extensive series of applications
(Refs. 30-32) involving high ly-supercritical nonlinear flows throughout the
transonic regime. The solver employs a SLOR procedure to solve the transonic
small-disturbance equations in fully-conservative form, and has demonstrated
its ability to be accurate and robust in determining accurate flow solutions not
only throughout the transonic regime but at subsonic and low supersonic
speeds as well. The method has been configured to treat free-air as well as a
variety of wind-tunnel outer boundary conditions (Ref. 31). Hence, it can be
directly applied to the present problem of predicting the aerodynamic forces
acting on a configuration by using contour integration of momentum fluxes over
an outer control surface. With this flow solver we formulated an initial test case
for the approximation method based on using flow field rather than surface
properties by considering the axisymmetric transonic flow past a body of
revolution enclosed by a solid sidewall boundary, as illustrated in Figure 45.
The control surface employed for the contour integration of the momentum flux
coincided with the circular inflow and outflow surfaces at the upstream and
downstream boundaries, together with the cylindrical sidewall surface. The
body geometry selected was chosen to be a particular parabolic-arc geometry
for which accurate wind tunnel data are available from Ref. 33. The particular
parabolic-arc body has a thickness ratio of 1/12 together with a cylindrical sting
attached to the rear of the body at the 85% length location. For the calculations,
the sidewall boundary was located laterally at 6 body lengths from the body
longitudinal axis, and the upstream and downstream boundary locations were
set at 3 body lengths, respectively, from the nose and tail of the body. Drag
calculations were then carried out, both by integration of body surface
pressures and by contour integration of momentum fluxes over the control
surface discussed above, for oncoming Mach numbers ranging from M = 0.90 to
1.20 in steps of 0.025. The agreement between the two calculations was very
satisfactorily, as indicated in Figure 45. Next, the approximation method
determination was reformulated in terms of the distributions of the two velocity
components on the various control surfaces. For this simple problem, this was
only necessary at the downstream boundary since at the upstream boundary,
constant oncoming conditions prevail, while at the lateral solid sidewall
boundary the momentum flux is identically zero. Comparative calculations with
the approximation method were then carded out employing various base and
calibration solutions to try to reproduce the drag curve determined by the exact
methods. The particular approximation results displayed in Figure 45 employed
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base and calibration solutions for M = {0.95, 1.0251 respectively, but are typical
of approximation results obtained for other choices of base and calibration
solutions. As can be seen from the figure, the approximation predictions, while
close to the exact results, exhibit a spurious character. We were unable to
determine the precise cause of this inconsistent behavior, but suspect that the
sensitivity that was previously encountered with the approximation method in
the vicinity of shock waves when using surface pressure distributions has now
been transferred to a corresponding sensitivity in the flow field velocity
distributions in the near vicinity of the body surface. A corresponding analog for
the three-dimensional problem previously considered above with the TWING
code would be the sensitivity in the flow field velocity distributions in the vicinity
of the wing trailing vortices that was noted and displayed in Figures 41 to 44.
Successful treatment of these regions of high-gradient sensitive flow vis-a-vis
the approximation method requires a reformulation of the method in terms of
appropriate invariant points for whatever flow quantities or distributions are
selected for use. This corresponds in a direct fashion to the methodology
developed in this present study for the problem of characterizing various shock
wave invariant points when employing surface pressure distributions as the
basic input to the approximation method.
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4. CONCLUSIONS AND RECOMMENDATIONS

An investigation was conducted involving the preliminary development of a
three-dimensional nonlinear approximation procedure for determining rapid
and accurate approximations to highly nonlinear flows such as typically occur in
turbomachinery applications. The overall objective was to develop and
demonstrate the feasibility of such approximation methods to successfully work
in a general 3-D turbomachinery design or parametric optimization environment
to substantially reduce the overall computational requirements necessary for
optimum design. The approximation procedures employ unit perturbations,
determined from two or more nonlinear *base" solutions which differ from one
another by a nominal change in some geometry or flow parameter, to predict a
family of related nonlinear solutions. The solutions can be either continuous or
highly discontinuous. It is conceived that these methods would be coupled with
high run-time three-dimensional computational flow solvers, and would be used
in conjunction with these solvers in applications where large numbers of related
solutions are needed. The computational time saving would be accomplished
by employing these rapid approximation methods to decrease the actual
number of expensive 3-D flow solutions needed in any optimization or design
study to a minimum.

The work undertaken here relates to the initial development and extension of
these methods and concepts to problems characteristic of three-dimensional
turbomachinery optimization design. The specific objectives of this study were:
theoretical development of the three-dimensional approximation procedure in a
form suitable for predicting surface properties on three-dimensional
turbomachinery blades for highly sensitive supercritical transonic flows
involving multiple shock waves, combination of the approximation method with
a nonlinear three-dimensional transonic flow solver, coupling of the combined
approximation method and nonlinear flow solver with an optimization design
procedure, and finally testing of the complete approximation method/3-D flow
solver/optimization code on problems relevant to the three-dimensional
turbomachinery design optimization environment.

Application of the approximation method to three-dimensional transonic flows
with multiple shock waves required the development of a multiple invariant
point characterization procedure for identifying and tracking through parameter
solution space the characteristic topology features associated with shock waves
appearing in the surface pressure distributions used as input to the
approximation method. It was found from numerical experimentation that a two-
point characterization of shock topology in surface pressure distributions was
adequate for the transonic flows of interest in this study. The characterization
procedure was extended to include additional invariant points required for
topology tracking of other high-gradient features characteristic of the general
class of three-dimensional transonic surface pressure distributions being
considered. These include stagnation point and minimum suction pressure and
associated recovery points near the nose on both upper and lower surfaces.
Finally, a global invariant point preprocessing procedure was developed to
ensure a continuous variation in the spanwise coordinate direction of all the
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selected invariant points. The approximation method was then tested on a
number of three-dimensional example problems involving strongly supercritical
transonic flows. The three-dimensional transonic full potential flow solver
TWING was employed to provide the flow solutions. Comparative results of the
approximation method predictions with the exact nonlinear solutions indicated
that the approximation method is able to provide good nonlinear predictions
over relatively large parametric ranges for three-dimensional problems
involving one to three simultaneous parameter variations.

Existing aerodynamic design optimization methods and applications thereof
were reviewed and, as a result, the quasi-Newton optimization driver QNMDIF
was selected as superior for optimization studies of the general class of interest
to this study. That optimization method was then coupled with the three-
dimensional approximation method and the three-dimensional TWING flow field
solver. Using past studies with the QNMDIF optimization driver as a guide, a 3-
D design optimization problem was then defined for testbed case studies
involving the combined code. The testbed optimization problem selected
employed as design variables the vertical displacement of a number of pre-
assigned points located in a certain region on the geometric surface of a 3-D
isolated blade which was to be modified, and incorporated a spline-fitting
procedure to redefine the surface geometry as the pre-assigned points displace
vertically from their baseline locations in response to the optimization process.
The drag/lift ratio was selected for the objective function. The testbed problem
was first solved using only full nonlinear 3-D TWING flow solutions in order to
obtain the exact optimum design point toward which the approximation method
could be tested. Application of the approximation method was then made to the
testbed problem to examine the capability of the method to produce accurate
results in a typical design environment, and also to evalutate its potential for
computational savings. Sensitivity studies were performed to examine the
accuracy dependence of the approximation method on the choice of the initial
calibration solution matrix.

Comparisons of the three-dimensional approximation method, configured with a
multiple invariant point characterization for surface shock waves, stagnation
point, and upper and lower surface suction pressure and recovery points, with
the corresponding exact nonlinear solutions for surface pressure distributions
indicated good accuracy and range of validity of the approximation method for
those situations where the basic flow topology did not significantly change over
the parameter range studied. For the sensitive transonic flows considered in
the testbed optimization case study, however, it was found necessary to
develop an additional postprocessing procedure to relocate all the invariant
points in order to provide a globally continuous variation in both the spanwise
invariant point locations as well as their associated surface pressure values.
With this enhancement of the approximation method, the method was applied to
predict both surface pressure distributions and spanwise sectional lift and drag
distributions within the 9 design variable solution space encompassed by the
testbed problem. The comparative results for the surface pressure distributions
provided reasonable overall agreement with the exact results, but exhibited
discrepancies related to the rapid topology changes occurring in the spanwise
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direction in these flows. However, the spanwise sectional lift and drag
distribution comparisons revealed a major shortcoming in the approximation
method. That is, while the sophisticated invariant point relocation procedures
developed here insure continuous variations of invariant point locations and
surface pressure values at those locations, this by itself does not insure a
continuous variation in the sectional integrated quantities obtained from those
pressure distributions. The reason for this is again due to the tendency for
extremely rapid local topology changes to occur in the basic surface pressure
distribution for these strongly nonlinear flows. These rapid topology changes in
surface pressure resulted in a small displacement error in the spanwise
invariant point location distribution causing the strength and location of the
shock at one or more spanwise locations to be sufficiently in error that a
significant error in the spanwise variation of the integrated sectional quantities
resulted. To investigate this problem further, a detailed evaluation of the
performance of the approximation method was carried out involving problems
having one to nine parametric variables. The following four major steps in the
approximation procedure were carefully reviewed: (1) the preprocessing
procedure for identifying and relocating the invariant point locations in the base
and calibration solutions, (2) the procedure for determining the approximation-
predicted solution based upon the preprocessed base/calibration solutions, (3)
the post-processing procedure for relocating the predicted invariant point
locations in the spanwise direction, (4) the integration of the post-processed
approximation predicted solutions to determine integrated spanwise sectional
quantities. As a result of the review, the multiple sources causing the observed
limitation of the approximation method in three-dimensional studies were
identified. The primary factors involve a combination of inherent numerical
inaccuracies in the three-dimensional base/calibration solutions near the
invariant point locations associated with the foot of the shock, together with a
geometrical compounding of these errors when the approximation predicted
invariant point locations are dependent upon the simultaneous variation of a
large number of multiple parameters. The fundamental action of the
approximation method is to move the invariant points linearly in multiply-
strained coordinate space with respect to each perturbation parameter. The
results predicted from such a formulation have been found to be extremely
accurate in two-dimensional situations where the shock structure is both
relatively simple and well resolved by the numerical solution procedure so that
the associated invariant points are also well defined. For three-dimensional
situations, however, the shock structure on or near the surface of a 3-D
configuration is not so clearly defined by the flow solvers. Consequently, the
definition of the invariant point locations in the base/calibration solutions is
correspondingly lacking. Attempting to correct these locations by employing
global smoothing criteria does improve the situation at most locations but
inevitably increases the error at other locations. The basic conclusion is that as
both the sensitivity and number of the base/calibration flow solutions that are
input to the approximation method increase, the accuracy and range of validity
of the prediction from the method will rapidly reduce. The strategy of trying to
maintain a constant range of validity by developing increasingly more complex
pre-and post-processing procedures to try to consistently remove these inherent
inaccuracies appears to be impractical since it requires major verification and
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testing and possibly even redevelopment of the processing procedures as both
the number of design variables increases and the complexity of the surface flow
topology increases.

It appears that the most logical way to proceed is to employ an alternative input
to the approximation method that is not so strongly sensitive and subject to
rapid toplogy changes as surface pressures. In order to test this hypothesis, the
approximation method was reformulated in terms of using flow field velocity
distributions at or near the outer grid boundary, and an initial preliminary
investigation was carried out employing the TWING flow field solver.
Discrepancies encountered in the mass and momentum flux determinations
over a control surface located near the outer boundary of the TWING
computational mesh prevented a definitive conclusion regarding the accuracy
of the three-dimensional approximation method based on input flow field
properties. Initial results from a corresponding axisymmetric flow case study
provided promising results for wave drag prediction, and pointed to the need for
the appropriate characteristic invariant point development associated with the
particular flow field properties employed.

Finally, the results of the present investigation provide an important guideline
for future development. We believe that the demonstrated potential of the
approximation method from both the present investigation and past studies, in
particular for design optimization studies involving highly nonlinear two-
dimensional transonic internal and external flows where its ability to reduce the
computational work by an order of magnitude with no degradation in accuracy
was clearly shown, warrants further development of the method for the three-
dimensional turbomachinery design problem. Furthermore, since the
approximation method does not depend upon any particular flow analysis code,
obsolescence of the methodology developed due to future analysis code
improvement will not occur. Flow field property formulations of the
approximation method should be pursued as being most suitable for complex
multiple parameter design problems.
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Figure 1. Illustration of perturbation solution for calibration solution in

physical and strained coordinates
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Figure 2. Comparison of perturbation and exact nonlinear surface pressure
distributions for a thickness-ratio perturbation of an isolated NACA
OOXX blade profile at M,. = 0.820 and a =0 0 for solution
interpolation
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Figure 3. Comparison of approximation predicted and exact nonlinear
surface pressure distributions for a thickness-ratio perturbation of a
NACA OOXX blade profile at M. - 0.820 and a - 0 0 for extreme
solution extrapolation
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Figure 4. Comparison of approximation predicted and exact nonlinear
surface pressure distributions for a thickness-ratio perturbation of a
NACA OOXX blade profile at M. - 0.820 and a = 0 0 for illustrating
both solution interpolation and extrapolation
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Figure 5. Comparison of approximation predicted and exact nonlinear upper
and lower surface pressure distributions for an angle-of-attack
perturbation of a NACA 0012 blade profile at M. - 0.750 illustrating
both solution interpolation and extrapolation
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Figure 7. Illustration of a typical 3-D surface pressure distribution
characteristic of the type employed in the current 3-D
approximation method development and characterization of the
various invariant points; chordwise upper and lower surface
pressure distributions at 17 spanwise stations from root to tip along
blade profile
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Figure 8. Illustration of the shock wave sharpening achieved by the
preprocessing procedure involving the invariant points associated
with the surface shock waves on the 3-D supercritical surface
pressure distribution shown in Figure 7
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Figure 9. Illustration of the smooth global spanwise correction achieved by
the preprocessing procedure acting on all of the invariant points
associated with the 3-D supercritical surface pressure distribution
shown in Figure 7
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Figure 10. Chordwise surface pressure distributions at 17 spanwise stations
for the baseline flow past an Isolated 3-D blade having an ONERA
M6 profile for M. = 0.820 and ax = 3.06
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Figure 11. Comparison of 3-D approximation predicted and exact nonlinear
surface pressure distributions at the root chord station (y/s = 0.0) for
a thickness ratio perturbation of the ONERA M6 blade profile shown
in Figure 10 illustrating both solution interpolation and
extrapolation
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Figure 13. Illustration of the extreme surface pressure topology change
involved in the oncoming Mach number perturbation test problem;
surface pressure distributions at the beginning, middle, and end of
the parameter range M = (0.880, 0.800, 0.720)
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Figure 14. Comparison of 3-D approximation predicted and exact nonlinear
surface pressure distributions at the outermost spanwise station
(y/s - 0.969) of the ONERA M6 blade profile shown in Figure 10 for
an oncoming Mach number perturbation illustrating both solution
interpolation and extrapolation
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CHORD LENGTH

Location of the fixed ()and movable (*) spline-support points on the MACA 64, A212 airfoll

Figure 15. Outline of overall optimization design test problem to be employed
as the benchmark case study for testing the 3-D approximation
method in a design environment; illustration of the Isolated blade
planform geometry and location of design variable points
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25 Span Stat-ion from ROOT to TIP

Cps-.49

6.06000 / 7.27200 / 6. 10300

Wi ng C1 - 0 1.36660

a8.2 0.4 0.6 e.8
x./C

Figure 16. Illustration of the 3-0 surface pressure distribution for the original
(nonoptimized) configuration for the benchmark optimization case
study
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25 Span Station from ROOT to TIP

Cp e

6.5

5.90907 /6.74903 /5.80915

5.78676 /6.483q8 5.q8039

5.56968 /6.96367 /6.13914

Wing C1 0 .33571

0.2 0.4 8/ .6 0.8

Figure 17. Illustration of the 3-D surface pressure distribution for the
optimization-modified configuration after the 7th optimization cycle
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-I.S 25 Span Station from ROOT fo TIP

Cpe

5.62997 / 6.396e3 / 5.67732

5.53177 / 6.36039 / 5.75535

5.4706.1 / 63.I/1' / 6 007;,

Wing C1 - 0.32344
1.5 1 1

0.6.4 e.6 e.8

Figure 18. Illustration of the 3-D surface pressure distribution for the
opti mization- modified configuration after the 8th optimization cycle
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25 Span Station from ROOT to TIP

-0.5 CS- 0.9

Cp e

0.5

5.35175 / 6.21602 / 5.51843

5.47246 / 6. 15292 / 5.52.745

W-ing CI 0.31598

00.2 0.4 0.6 0.8
x/C

Figure 19. Illustration of the 3-D surface pressure distribution for the
optimization-modified configuration after the 9th optimization cycle
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25 Span Station from ROOT to TIP

Cp a

5.26853 ,'5.93810 / 5.44294

5.35620 /5.95273 / 5.39770
5.46048 /6.34868 / 5.57955
Wing C1 0.31116

1.5 I I
8 .2 0.4 0.6 0.8

Figure 20. Illustration of the 3-D surface pressure distribution for the
optimization-modified configuration after the 10Oth optimization cycle
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CASE 0-3: 3D ONM1/ThJING PERTURBAT ION

BASE 6.060/7.272/6. 103/6.s69/7.272/6.1303/6.060/7 .272/6. 103

5 PREOT 5.909/6.749/5.809/5.787/6.484/5.980/5.S7e/6.964/6. 139

-A ~ c --.

8.5

Exact
000 o R pprox. Method

Calibration I
Calibration 2

* ~eCalibration 3

Calibration 5
Calibration 6
Calibration 7
Calibration 8
Calibration 9

0.0 8 .2 8 .4 8 .6 0 .8 1.8
x/c

Figure 22. Comparison of 3-D approximation predicted and exact nonlinear
surface pressure distributions at the root Chord station (yls = 0.0) for
the particular values of the 9 design variables at the end of the 7th
optimization cycle; complete exact nonlinear 3-D surface pressure
distribution shown in Figure 17
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CRSE 0-3: 3D ONMI'TWING PERTURBATION

BA5E 6.868/7.272/6.193/6.960/7.272/6. 103/6.060/7.272/6. 193

O.S

Exc

-Ie o prx.Mto
-~ ~.,h'.-Bess.

Caibato I.

-8.5raio 2_

Calibration 1
Cal ibration 2

i~eCalibration 3

Figre 3. omarion f -D pprxiatinpedcalibrxationli6a
surac pesur ditrbuios t te oo cor Caliaion 7s=00 o

Figre3. oprisof ppoiation predicte andlet exact nonlinear 3Dsraepesr

distribution shown in Figure 18
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CASE 0-3: 3D QNM1/TWING PERTURBATION

BASE 6.6/7.272/6.13/6.e6e/7 .272/6. 103/6.669/7.272/6.1393

-2.0 PREOT S.3S2/6.216/5.519/5.472/6. 153/5.523/5.SS2/6.41 3/5.351

0I.

Cp -49

Exact
8. ooo aAp prox. Method

Basis
Calibration I
Calibration 2
Calibration 3
Calibration 4
Calibration 5
Calibration 6
-Calibration 7
Calibration 8

--Calibration 9
8. . .4 0.6 8.8ie

x/C

Figure 24. Comparison of 3-D approximation predicted and exact nonlinear
surface pressure distributions at the root chord station (yls =0.0) for
the particular values of the 9 design variables at the end of the 9th
optimization cycle; complete exact nonlinear 3-D surface pressure
distribution shown in Figure 19
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CASE 0-3: 3D ONM1/TWING PERTURBAT ION

BASE 6.969/7.272/6. 193/6.06B/7.272/6. 183/6.969/7.272/6.163
CAL lB S.9806.e809/S. BOO/S.8999/6. N6/5.B90/5.89e16. 8eS. Bee

-2.5 PREOT S.269/S.938/5.443/5.356/S.953/5.398/S.46e/6.349/S.SMe

*-2.0e

Cp -0.5

0000 Approx. Method

C3libration I
Calibration 2
Calibration 3
Calibration 4
Cal ibration 5
Cal ibration 6
Cal ibration 7
Calibration 8
Calibration 9

8.0 0.2 0.4 0.6 0.8 1.e

Figure 25. Comparison of 3-0 approximation predicted and exact nonlinear
surface pressure distributions at the root chord station (yls = 0.0) for
the particular values of the 9 design variables at the end of the I10th
optimization cycle; complete exact nonlinear 3-0 surface pressure
distribution shown in Figure 20

73



I- -

o4 W
4- 0

0 G c

4- 4

C0 -0 m*

CD COC

00

aC Co
0000o

cIn

L) E 1 ~L
0~ *. NN 0

d-S W .-

- C). to

W0 (

Ca'L

,

M N .



w so

0.0

4-0
ie

SL

4E 0 0

u (D
0.C

N j (D

8f )L c( 0

'I@ cc to

CL c

I.,0

4-%~ II.

d(I,

CLJ'

W2 0

(DCD

I.,

E'i CD C

-J ", 

0"T

in

UNN

75



> m 6 0(
co

C- -=

00

N u

oLIfmkC P

4. kat D ;-

C~ CIP-o
-N-Uo

Uw u

V) f 0 C

I E

IA - .0. 0 QA-

"I * 0

C C

CLI

IN
V! 0 (

c~0
0-u0

CD U)0

Us'

ID

1, L)
VI al V

V) c~'
on 0 ~

76



J

U.

0

00

a 
44-

0

4- h -

c vi -C~

CI n z cp

In V--) u) 0 o

('A Q5.a ~ .c E
CLs -u

~3U).z0 0. 0-

00

c 0

wem 0 C

is 
C

V 0 0
-. 9,0

4Clco

L) l

No . pJ)

10

77



-- a-l

00a4. xZ 1

a 0 000

0 a , L

0 i

G!~ 00 4

o

N- 0 0 CD

NOI CY
0~~ cc
E Nccc u

o !C CL

0: C- CU.0
0.- 0K - LC

> >

- B Cl 0.,
to . 0 0 0 0U 0..C-go 0Ccx

0 0. 0 (.

CIL U 0 -- s

c L0000

CYC
CC

0 CD 2 f
0..0

B 8D 0 a800 0000000

N.

C o.78



aaca'

0

4- 1, cy 0.

06 U

0 r. 0! 1 c C

r- C0

0 0 --

OW- '0 0

a C *u 
CD .O

O0 r- =~C

U 
CL

UE

0

A cc > c cc

4-0C
0D 0 C

(a '

CL >

aC*-

r-m
4-f a0 - C.0=

aa fmS ClC t

0 >

CY C 0 O

cy C 0 0- 0
1* 00E4G0K43

C :3 Ej-CC* 0> C

0 0 QECL

4Y 4 44 4C

>I 0

N.

t Io 
0

U4 70

V) n a a8 8 9938 B a 6 B o ~ a*

* U-4
4 K

0D'0

3 4;

79



Co.
o to

c 0)
C .D

to r-o 0 0

0~ NU

* 0N

to 44D

CC

0n (0 > E ca

>0 C 0.0

S~ -- S; cc E

% 0 0 of =

ID 
0 E 2ID

0 444>
cx 02c 0 0

N~+ 44...C.

E -c

0~~ CL X

t* 0 r N O
C . a o i.. CVO0

I- 0 a a aa 0 a 00 1, C
0-. C D 16-

1,i - L. C L ; -

too.0 0 ' 0~

00000000T >0000 Qa. O0
*~C to US~

*40

4- to . *

I .V ol

S 80



CL~... 0. .2692 CO - .6256 IOOSCO/CL 9.5000 Sectioal CL. 6 .2905 CD . 6.0182 IGGXeW/a 6.25112

Y/S as 0.000 OsExc .Eae

Celib. I ColIb. I
Ca I b. 2Collb. 2
Collb.3 1.0Ce 11b . 3
C fib. 4... Wb. 4
C:H. 3C.116. 3

#:-:J P 2 c::!I. - 11,Collb. 
6

9 a @ P' 2.d C.i~b. 7

F; adS P+ t:8-xdP 3 Cel1b.

Fixed Pt 4 lib. Ce9b x9iedP

K/C 
X/C ci .1.

(a) (b)

Soctiensl CL. - .36 CO 610158 1665WCML *4.8742 Setiona CI. - .3149 CD - .6121 1006mW/CL *3.0527

.11

CoClb. 2 
1

C!bO 2 
C~ Cl~b. 2

b: 4 
CellO. 3

Ce:O I 
. CellO. 4
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*.C Hb :: 1 C1%

*fed IP 3 :.Ib i C llo. 8

3~~ ONe Pixe 4 P. -LO

6, /C K/C Oa
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Figure 33. Comparison of 3-D approximation predicted and exact nonlinear
chordwise surface pressure distributions at all 25 spanwise stations
for the pressure distribution associated with the 7th optimization
cycle design result for the benchmark case study
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Sectiona I CL/C and CD/C Dis+ribution
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Figure 35. flustration of the approximation predicted spanwise distributions of
the sectional lift, drag, and drag/lift ratio based on post-processed
invariant point surface pressure distributions
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WING EXTENSION FREESTREAM
SIDEWALL BOUNDARY

OUTER BOUNDARY
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a) physical domain
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b) computational domain

Figure 36. llustration of the physical and computational computational
domains embodied in the 3-D TWING flow field solver
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Figure 37. Ilustration of the two-dimensional (X,Z) 9-type grid at the first
spanwise station (symmetry plane) along wing
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Figure 38. llustration of the two-dimensional (X,Z) 0-type grid at the first
spanwise station beyond the wing tip
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Figure 39. Planform view of TWING grid in Z =0 plane illustrating grid tapering
and clustering near leading and trailing edges and ficticious wing
extension
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Figure 40. Perspective view of outer boundary of 3-D TWING grid; K = 1

computational grid shell in physical coordinates
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Figure 41. Distribution of U velocity component at the 30 spanwise locations

from wing root to sidewall boundary on the K = 2 grid shell
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Figure 42. Distribution Of V velocity component at the 30 spanwise locations

from wing root to sidewall boundary onl the K - 2 grid shell

96



!

0.2

0.6

W e.4

0.2

-6.2 I Iii
-6 -4 -2 6 2 46

X/C

Figure 43. Distribution of W velocity component at the 30 spanwise locations
from wing root to sidewall boundary on the K = 2 grid shell
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Figure 45. Illustration of test case formulation for approximation method based
on using flow field rather than surface properties; axisymmetric
transonic flow past a body of revolution with a solid wall outer
boundary; comparison of wave drag predictions
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